Low-rank Matrix Estimation via Approximate Message Passing

Ramji Venkataramanan
Department of Engineering

(Joint work with Andrea Montanari)

October 31, 2018

CCIMI Seminar

Symmetric Low-rank Model

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \quad \in \mathbb{R}^{n \times n}
$$

- $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ are deterministic scalars
- $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{n}$ are orthonormal vectors ("spikes")
- \boldsymbol{W} is a symmetric noise matrix

GOAL: To estimate the vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ from \boldsymbol{A}

Rectangular Low-rank model

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \quad \in \mathbb{R}^{m \times n}
$$

- $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ are deterministic scalars
- $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k} \in \mathbb{R}^{m}$ are left singular vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{n}$ are right singular vectors
- \boldsymbol{W} is a noise matrix

GOAL: Estimate the singular vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ and $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$

Applications

Topic Modelling

- Each row of \boldsymbol{A} is a document
- Each row of \boldsymbol{V}^{\top} is a topic
- Each document convex combination of k topics

Applications

Collaborative filtering

- A contains ratings of users for items (e.g, films or books)
- Rows represent users, columns represent items
- Each rating is a combination of weights corresponding to a small number of factors

Hidden clique

Image from Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques by A. Montanari

[^0]
Hidden clique

Image from Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques by A. Montanari

[^1]
Hidden clique

Image from Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques by A. Montanari

[Alon, Krivelivich, Sudakov '98], . . .

Hidden clique

For hidden clique S, adjacency matrix has the form

$$
\boldsymbol{A}=\mathbf{1}_{S} \mathbf{1}_{S}^{\mathrm{T}}+\boldsymbol{W}
$$

[Alon, Krivelivich, Sudakov '98], ...

Symmetric Spiked Model

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \quad \in \mathbb{R}^{n \times n}
$$

- $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{k}$ are deterministic scalars
- $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k} \in \mathbb{R}^{n}$ are orthonormal vectors ("spikes")
- W $\sim \operatorname{GOE}(n) \quad \Rightarrow \quad W$ symmetric with $\left(W_{i i}\right)_{i \leq n} \sim_{i . i . d .} \mathrm{N}\left(0, \frac{2}{n}\right)$ and $\left(W_{i j}\right)_{i<j \leq n} \sim_{i . i . d .} \mathrm{N}\left(0, \frac{1}{n}\right)$

Spectrum of spiked matrix

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W}
$$

Random matrix theory and the 'BBAP' phase transition :

- Bulk of eigenvalues of \boldsymbol{A} in $[-2,2]$ distributed according to Wigner's semicircle
- Outlier eigenvalues corresponding to $\left|\lambda_{i}\right|$'s greater than 1 :

$$
z_{i} \rightarrow \lambda_{i}+\frac{1}{\lambda_{i}}>2
$$

- Eigenvectors φ_{i} corresponding to outliers z_{i} satisfy

$$
\left|\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{v}_{i}\right\rangle\right| \rightarrow \sqrt{1-\frac{1}{\lambda_{i}^{2}}}
$$

[Baik, Ben Arous, Péché '05], [Baik, Silverstein '06], [Capitaine, Donati-Martin, Féral '09], [Benaych-Georges and Nadakuditi '11],

Structural information

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W}
$$

When \boldsymbol{v}_{i} 's are unstructured, e.g., drawn uniformly at random from the unit sphere,

- Best estimator of $\boldsymbol{v}_{\boldsymbol{i}}$ is the i th eigenvector $\boldsymbol{\varphi}_{i}$
- If $\left|\lambda_{i}\right| \geq 1$, then $\left|\left\langle\boldsymbol{v}_{i}, \varphi_{i}\right\rangle\right| \rightarrow \sqrt{1-\frac{1}{\lambda_{i}^{2}}}$

Structural information

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W}
$$

When \boldsymbol{v}_{i} 's are unstructured, e.g., drawn uniformly at random from the unit sphere,

- Best estimator of \boldsymbol{v}_{i} is the i th eigenvector $\boldsymbol{\varphi}_{i}$
- If $\left|\lambda_{i}\right| \geq 1$, then $\left|\left\langle\boldsymbol{v}_{i}, \boldsymbol{\varphi}_{i}\right\rangle\right| \rightarrow \sqrt{1-\frac{1}{\lambda_{i}^{2}}}$

But we often have structural information about \boldsymbol{v}_{i} 's

- For example, \boldsymbol{v}_{i} 's may be sparse, bounded, non-negative etc.
- Relevant in sparse PCA, non-negative PCA, hidden clique, community detection under stochastic block model, ...
- Can improve on spectral methods

Prior on eigenvectors

$$
\begin{gathered}
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\wedge} \boldsymbol{V}^{\top}+\boldsymbol{W} \\
\boldsymbol{V}=\left[\begin{array}{llll}
\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \ldots \boldsymbol{v}_{k}
\end{array}\right] \quad \mathbb{R}^{n \times k}
\end{gathered}
$$

If each row of \boldsymbol{V} is $\sim_{i . i . d} P_{\underline{V}}$, then Bayes-optimal estimator (for squared error loss) is

$$
\widehat{\boldsymbol{V}}_{\text {Bayes }}=\mathbb{E}[\boldsymbol{V} \mid \boldsymbol{A}]
$$

- Generally not computable
- Closed-form expressions for asymptotic Bayes risk
[Deshpande, Montanari '14], [Barbier et al. '16], [Lesieur et al. '17], [Miolane, Lelarge '16] ...

Computable estimators

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\wedge} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

- Convex relaxations generally do not achieve Bayes-optimal performance [Javanmard, Montanari, Ricci-Tersinghi '16]
- MCMC can approximate Bayes estimator, but can have large mixing time and hard to analyze

Computable estimators

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\top}+\boldsymbol{W}
$$

- Convex relaxations generally do not achieve Bayes-optimal performance [Javanmard, Montanari, Ricci-Tersinghi '16]
- MCMC can approximate Bayes estimator, but can have large mixing time and hard to analyze

In this talk

Approximate Message Passing (AMP) algorithm to estimate \boldsymbol{V}

Rank one spiked model

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}, \quad \boldsymbol{v} \sim_{i . i . d .} P_{V}, \quad \mathbb{E} V^{2}=1
$$

Power iteration for principal eigenvector: $\boldsymbol{x}^{t+1}=\boldsymbol{A} \boldsymbol{x}^{t}$, with \boldsymbol{x}^{0} chosen at random

Rank one spiked model

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}, \quad \boldsymbol{v} \sim_{i . i . d .} P_{V}, \quad \mathbb{E} V^{2}=1
$$

Power iteration for principal eigenvector:
$\boldsymbol{x}^{t+1}=\boldsymbol{A} \boldsymbol{x}^{t}$, with \boldsymbol{x}^{0} chosen at random
AMP:

$$
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right), \quad \mathrm{b}_{t}=\frac{1}{n} \sum_{i=1}^{n} f_{t}^{\prime}\left(x_{i}^{t}\right)
$$

- Non-linear function $f_{t}: \mathbb{R} \rightarrow \mathbb{R}$ chosen based on structural info on v
- Memory term ensures a nice distributional property for the iterates in high dimensions
- Can be derived via approximation of belief propagation equations

State evolution

$$
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-b_{t} f_{t-1}\left(x^{t-1}\right), \quad \text { with } b_{t}=\frac{1}{n} \sum_{i=1}^{n} f_{t}^{\prime}\left(x_{i}^{t}\right)
$$

If we initialize with \boldsymbol{x}^{0} independent of \boldsymbol{A}, then as $n \rightarrow \infty$:

$$
\boldsymbol{x}^{t} \longrightarrow \mu_{t} \boldsymbol{v}+\sigma_{t} \mathbf{g}
$$

$-\mathbf{g} \sim_{i . i . d .} \mathrm{N}(0,1)$, independent of $\boldsymbol{v} \sim_{\text {i.i.d. }} P_{V}$

State evolution

$$
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right), \quad \text { with } \mathrm{b}_{t}=\frac{1}{n} \sum_{i=1}^{n} f_{t}^{\prime}\left(x_{i}^{t}\right)
$$

If we initialize with \boldsymbol{x}^{0} independent of \boldsymbol{A}, then as $n \rightarrow \infty$:

$$
\boldsymbol{x}^{t} \longrightarrow \mu_{t} \boldsymbol{v}+\sigma_{t} \mathbf{g}
$$

- $\mathbf{g} \sim_{\text {i.i.d. }} \mathrm{N}(0,1)$, independent of $\boldsymbol{v} \sim_{\text {i.i.d. }} P_{V}$
- Scalars μ_{t}, σ_{t}^{2} recursively determined as

$$
\mu_{t+1}=\lambda \mathbb{E}\left[V f_{t}\left(\mu_{t} V+\sigma_{t} G\right)\right], \quad \sigma_{t+1}^{2}=\mathbb{E}\left[f_{t}\left(\mu_{t} V+\sigma_{t} G\right)^{2}\right]
$$

- Initialize with $\mu_{0}=\frac{1}{n}\left|\mathbb{E}\left\langle\boldsymbol{x}^{0}, \boldsymbol{v}\right\rangle\right|, \sigma_{0}^{2}=\mathbb{E} V^{2}-\mu_{0}^{2}$
[Bayati,Montanari '11], [Rangan, Fletcher '12], [Deshpande, Montanari '14]

Bayes-optimal AMP

Assuming $\boldsymbol{x}^{t}=\mu_{t} \boldsymbol{v}+\sigma_{t} \mathbf{g}$, choose $f_{t}(y)=\lambda \mathbb{E}\left[V \mid \mu_{t} V+\sigma_{t} G=y\right]$

Bayes-optimal AMP

Assuming $\boldsymbol{x}^{t}=\mu_{t} \boldsymbol{v}+\sigma_{t} \mathbf{g}$, choose $f_{t}(y)=\lambda \mathbb{E}\left[V \mid \mu_{t} V+\sigma_{t} G=y\right]$
State evolution becomes $\gamma_{t+1}=\lambda^{2}\left\{1-\operatorname{mmse}\left(\gamma_{t}\right)\right\}$ with $\mu_{t}=\sigma_{t}^{2}=\gamma_{t}$

Initial value $\gamma_{0} \propto \frac{1}{n}\left|\mathbb{E}\left\langle\boldsymbol{x}^{0}, \boldsymbol{v}\right\rangle\right|$, what is $\lim _{t \rightarrow \infty} \gamma_{t}$?

Fixed points of state evolution

- If $\mathbb{E}\left\langle\boldsymbol{x}^{0}, \boldsymbol{v}\right\rangle=0$, then $\gamma_{t}=0$ is an (unstable) fixed point.
- This is the case when \boldsymbol{v} has zero mean, as \boldsymbol{x}^{0} is independent of v

Spectral Initialization

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}, \quad \lambda>1
$$

- Compute φ_{1}, the principal eigenvector of \boldsymbol{A}
- Run AMP with initialization $\boldsymbol{x}^{0}=\sqrt{n} \varphi_{1}$
- $\gamma_{0}>0$ as $\frac{1}{n}\left|\mathbb{E}\left\langle\boldsymbol{x}^{0}, \boldsymbol{v}\right\rangle\right| \rightarrow \sqrt{1-\lambda^{-2}}$

AMP with spectral initialization

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

Existing AMP analysis does not apply for initialization \boldsymbol{x}^{0} correlated with v

Standard AMP analysis

With $\boldsymbol{W} \sim \operatorname{GOE}(n)$, consider

$$
\boldsymbol{h}^{t+1}=\boldsymbol{W} f_{t}\left(\boldsymbol{h}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{h}^{t-1}\right)
$$

Initialised with \boldsymbol{h}^{0} independent of \boldsymbol{W}. Let $\vartheta_{t}:=\left\{\boldsymbol{h}^{0}, \ldots, \boldsymbol{h}^{t}\right\}$

Standard AMP analysis

With $\boldsymbol{W} \sim \operatorname{GOE}(n)$, consider

$$
\boldsymbol{h}^{t+1}=\boldsymbol{W} f_{t}\left(\boldsymbol{h}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{h}^{t-1}\right)
$$

Initialised with \boldsymbol{h}^{0} independent of \boldsymbol{W}. Let $\vartheta_{t}:=\left\{\boldsymbol{h}^{0}, \ldots, \boldsymbol{h}^{t}\right\}$

- Conditional distribution

$$
\left.\boldsymbol{W}\right|_{\vartheta_{t}} \stackrel{d}{=} \mathbb{E}\left[\boldsymbol{W} \mid \vartheta_{t}\right]+\boldsymbol{P}_{\vartheta_{t}}^{\perp} \tilde{\boldsymbol{W}} \boldsymbol{P}_{\vartheta_{t}}^{\perp}
$$

Standard AMP analysis

With $\boldsymbol{W} \sim \operatorname{GOE}(n)$, consider

$$
\boldsymbol{h}^{t+1}=\boldsymbol{W} f_{t}\left(\boldsymbol{h}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{h}^{t-1}\right)
$$

Initialised with \boldsymbol{h}^{0} independent of \boldsymbol{W}. Let $\vartheta_{t}:=\left\{\boldsymbol{h}^{0}, \ldots, \boldsymbol{h}^{t}\right\}$

- Conditional distribution

$$
\left.\boldsymbol{W}\right|_{\vartheta_{t}} \stackrel{d}{=} \mathbb{E}\left[\boldsymbol{W} \mid \vartheta_{t}\right]+\boldsymbol{P}_{\vartheta_{t}}^{\perp} \tilde{\boldsymbol{W}} \boldsymbol{P}_{\vartheta_{t}}^{\perp}
$$

- By induction, show that for $t \geq 0$:

$$
\boldsymbol{h}^{t+1}=\sum_{i=0}^{t} \alpha_{i} \boldsymbol{h}^{i}+\boldsymbol{g}_{t}+\boldsymbol{\Delta}_{t}
$$

Standard AMP analysis

With $\boldsymbol{W} \sim \operatorname{GOE}(n)$, consider

$$
\boldsymbol{h}^{t+1}=\boldsymbol{W} f_{t}\left(\boldsymbol{h}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{h}^{t-1}\right)
$$

Initialised with \boldsymbol{h}^{0} independent of \boldsymbol{W}. Let $\vartheta_{t}:=\left\{\boldsymbol{h}^{0}, \ldots, \boldsymbol{h}^{t}\right\}$

- Conditional distribution

$$
\left.\boldsymbol{W}\right|_{\vartheta_{t}} \stackrel{d}{=} \mathbb{E}\left[\boldsymbol{W} \mid \vartheta_{t}\right]+\boldsymbol{P}_{\vartheta_{t}}^{\perp} \tilde{\boldsymbol{W}} \boldsymbol{P}_{\vartheta_{t}}^{\perp}
$$

- By induction, show that for $t \geq 0$:

$$
\boldsymbol{h}^{t+1}=\sum_{i=0}^{t} \alpha_{i} \boldsymbol{h}^{i}+\boldsymbol{g}_{t}+\boldsymbol{\Delta}_{t}
$$

$$
\boldsymbol{h}^{t+1} \stackrel{d}{\approx} \tau_{t} \boldsymbol{g} \quad \tau_{t}^{2}=\mathbb{E}\left[f_{t}\left(\tau_{t-1} G\right)^{2}\right], \quad \tau_{0}^{2}=\left\|f\left(\boldsymbol{h}^{0}\right)\right\|^{2} / n
$$

[Bolthausen '10], [Bayati-Montanari '11], [Rush-Venkataramanan '16]

AMP with spectral initialization

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

Let $\left(\varphi_{1}, z_{1}\right)$ be principal eigenvector and eigenvalue of \boldsymbol{A}

$$
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)
$$

initialised with $x^{0}=\sqrt{n} \varphi_{1}$

AMP with spectral initialization

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

Let $\left(\varphi_{1}, z_{1}\right)$ be principal eigenvector and eigenvalue of \boldsymbol{A}

$$
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)
$$

initialised with $\boldsymbol{x}^{0}=\sqrt{n} \varphi_{1}$
We write

$$
\boldsymbol{A}=z_{1} \varphi_{1} \varphi_{1}^{\top}+\boldsymbol{P}^{\perp}\left(\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}\right) \boldsymbol{P}^{\perp}
$$

- $\boldsymbol{P}^{\perp}=\boldsymbol{I}-\varphi_{1} \boldsymbol{\varphi}_{1}^{\top}$

AMP with spectral initialization

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

Let $\left(\varphi_{1}, z_{1}\right)$ be principal eigenvector and eigenvalue of \boldsymbol{A}

$$
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)
$$

initialised with $\boldsymbol{x}^{0}=\sqrt{n} \varphi_{1}$
Instead of \boldsymbol{A}, we will analyze AMP on

$$
\tilde{\boldsymbol{A}}=z_{1} \boldsymbol{\varphi}_{1} \boldsymbol{\varphi}_{1}^{\top}+\boldsymbol{P}^{\perp}\left(\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\tilde{\boldsymbol{W}}\right) \boldsymbol{P}^{\perp}
$$

- $\boldsymbol{P}^{\perp}=\boldsymbol{I}-\varphi_{1} \varphi_{1}^{\top}$
- $\tilde{\boldsymbol{W}} \sim \operatorname{GOE}(n)$ is independent of \boldsymbol{W}

1. Conditioned on z_{1} and $\left(\varphi_{1}^{\top} \boldsymbol{v}\right)^{2}$ being close to limiting values, total variation distance between \boldsymbol{A} and $\tilde{\boldsymbol{A}}$ is small

AMP with spectral initialization

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

Let $\left(\varphi_{1}, z_{1}\right)$ be principal eigenvector and eigenvalue of \boldsymbol{A}

$$
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)
$$

initialised with $\boldsymbol{x}^{0}=\sqrt{n} \varphi_{1}$
Instead of \boldsymbol{A}, we will analyze AMP on

$$
\tilde{\boldsymbol{A}}=z_{1} \varphi_{1} \varphi_{1}^{\top}+\boldsymbol{P}^{\perp}\left(\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\tilde{\boldsymbol{W}}\right) \boldsymbol{P}^{\perp}
$$

- $\boldsymbol{P}^{\perp}=\boldsymbol{I}-\varphi_{1} \varphi_{1}^{\top}$
- $\tilde{\boldsymbol{W}} \sim \operatorname{GOE}(n)$ is independent of \boldsymbol{W}

1. Conditioned on z_{1} and $\left(\varphi_{1}^{\top} \boldsymbol{v}\right)^{2}$ being close to limiting values, total variation distance between \boldsymbol{A} and $\tilde{\boldsymbol{A}}$ is small
2. Analyze AMP on $\tilde{\boldsymbol{A}}$ by extending standard AMP analysis

Model assumptions

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

Let $\boldsymbol{v}=\boldsymbol{v}(n) \in \mathbb{R}^{n}$ be a sequence such that the empirical distribution of entries of $\boldsymbol{v}(n)$ converges weakly to P_{V},

Model assumptions

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

Let $\boldsymbol{v}=\boldsymbol{v}(n) \in \mathbb{R}^{n}$ be a sequence such that the empirical distribution of entries of $\boldsymbol{v}(n)$ converges weakly to P_{V},

Performance of any estimator $\hat{\boldsymbol{v}}$ measured via loss function $\psi: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}:$

$$
\psi(\boldsymbol{v}, \hat{\boldsymbol{v}})=\frac{1}{n} \sum_{i=1}^{n} \psi\left(v_{i}, \hat{v}_{i}\right)
$$

ψ assumed to be pseudo-Lipschitz:

$$
|\psi(\boldsymbol{x})-\psi(\boldsymbol{y})| \leq C\|\boldsymbol{x}-\boldsymbol{y}\|_{2}\left(1+\|\boldsymbol{x}\|_{2}+\|\boldsymbol{y}\|_{2}\right), \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{2}
$$

L_{2} loss, L_{1} loss are both pseudo-Lipschitz

Result for rank one case

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

Theorem: Let $\lambda>1$. Consider the AMP

$$
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)
$$

- Assume $f_{t}: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz continuous
- Initialize with $\boldsymbol{x}^{0}=\sqrt{n} \varphi_{1}$

Then for any pseudo-Lipschitz loss function ψ and $t \geq 0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \psi\left(v_{i}, x_{i}^{t}\right)=\mathbb{E}\left\{\psi\left(V, \mu_{t} V+\sigma_{t} G\right)\right\} \quad \text { a.s. }
$$

Result for rank one case

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

Theorem: Let $\lambda>1$. Consider the AMP

$$
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)
$$

- Assume $f_{t}: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz continuous
- Initialize with $\boldsymbol{x}^{0}=\sqrt{n} \varphi_{1}$

Then for any pseudo-Lipschitz loss function ψ and $t \geq 0$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \psi\left(v_{i}, x_{i}^{t}\right)=\mathbb{E}\left\{\psi\left(V, \mu_{t} V+\sigma_{t} G\right)\right\} \quad \text { a.s. }
$$

State evolution parameters: $\mu_{0}=\sqrt{1-\lambda^{-2}}, \quad \sigma_{0}=1 / \lambda$,

$$
\mu_{t+1}=\lambda \mathbb{E}\left[V f_{t}\left(\mu_{t} V+\sigma_{t} G\right)\right], \quad \sigma_{t+1}^{2}=\mathbb{E}\left[f_{t}\left(\mu_{t} V+\sigma_{t} G\right)^{2}\right]
$$

Proof Sketch

True vs conditional model

$$
\begin{gathered}
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W} \\
\tilde{\boldsymbol{A}}=z_{1} \varphi_{1} \boldsymbol{\varphi}_{1}^{\top}+\boldsymbol{P}^{\perp}\left(\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\tilde{\boldsymbol{W}}\right) \boldsymbol{P}^{\perp}
\end{gathered}
$$

Lemma

For $\left(z_{1}, \varphi_{1}\right) \in\left\{\left|z_{1}-\left(\lambda+\lambda^{-1}\right)\right| \leq \varepsilon, \quad\left(\varphi_{1}^{\top} \boldsymbol{v}\right)^{2} \geq 1-\lambda^{-2}-\varepsilon\right\}$,
we have

$$
\sup _{\left(z_{\hat{s}}, \boldsymbol{\Phi}_{\hat{S}}\right) \in \mathcal{E}_{\varepsilon}}\left\|\mathbb{P}\left(\boldsymbol{A} \in \cdot \mid z_{1}, \boldsymbol{\varphi}_{1}\right)-\mathbb{P}\left(\tilde{\boldsymbol{A}} \in \cdot \mid z_{1}, \boldsymbol{\varphi}_{1}\right)\right\|_{\mathrm{TV}} \leq \frac{1}{c(\varepsilon)} e^{-n c(\varepsilon)}
$$

AMP on conditional model

$$
\tilde{\boldsymbol{A}}=z_{1} \varphi_{1} \varphi_{1}^{\top}+\boldsymbol{P}^{\perp}\left(\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\tilde{\boldsymbol{W}}\right) \boldsymbol{P}^{\perp}
$$

AMP with $\tilde{\boldsymbol{A}}$ instead of \boldsymbol{A} :

$$
\tilde{\boldsymbol{x}}^{t+1}=\tilde{\boldsymbol{A}} f\left(\tilde{\boldsymbol{x}}^{t} ; t\right)-\mathrm{b}_{t} f\left(\tilde{\boldsymbol{x}}^{t-1} ; t-1\right), \quad \tilde{\boldsymbol{x}}^{0}=\sqrt{n} \varphi_{1}
$$

Analyze using existing AMP analysis + results from random matrix theory

Bayes-optimal AMP

$$
\begin{gathered}
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w} \\
\boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)
\end{gathered}
$$

- Bayes-optimal choice $f_{t}(y)=\lambda \mathbb{E}\left(V \mid \gamma_{t} V+\sqrt{\gamma_{t}} G=y\right)$
- State evolution:

$$
\gamma_{t+1}=\lambda^{2}\left\{1-\operatorname{mmse}\left(\gamma_{t}\right)\right\}, \quad \gamma_{0}=\lambda^{2}-1
$$

where $\operatorname{mmse}(\gamma)=\mathbb{E}\left\{[V-\mathbb{E}(V \mid \sqrt{\gamma} V+G)]^{2}\right\}$

- $\mu_{t}=\sigma_{t}^{2}=\gamma_{t}$

Bayes-optimal AMP

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

Let $\gamma_{\text {AMP }}(\lambda)$ be the smallest strictly positive solution of

$$
\begin{equation*}
\gamma=\lambda^{2}[1-\operatorname{mmse}(\gamma)] . \tag{1}
\end{equation*}
$$

Then the AMP estimate $\hat{\boldsymbol{x}}^{t}=f_{t}\left(\boldsymbol{x}^{t}\right)$ achieves

$$
\lim _{t \rightarrow \infty} \lim _{n \rightarrow \infty} \min _{s \in\{+1,-1\}} \frac{1}{n}\left\|\hat{\boldsymbol{x}}^{t}-s \boldsymbol{v}\right\|_{2}^{2}=1-\frac{\gamma_{\mathrm{AMP}}(\lambda)}{\lambda^{2}}
$$

Bayes-optimal AMP

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

Let $\gamma_{\text {AMP }}(\lambda)$ be the smallest strictly positive solution of

$$
\begin{equation*}
\gamma=\lambda^{2}[1-\operatorname{mmse}(\gamma)] \tag{1}
\end{equation*}
$$

Then the AMP estimate $\hat{\boldsymbol{x}}^{t}=f_{t}\left(\boldsymbol{x}^{t}\right)$ achieves
Overlap : $\quad \lim _{t \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\left|\left\langle\hat{\boldsymbol{x}}^{t}, \boldsymbol{v}\right\rangle\right|}{\left\|\hat{\boldsymbol{x}}^{t}\right\|_{2}\|\boldsymbol{v}\|_{2}}=\frac{\sqrt{\gamma_{\mathrm{AMP}}(\lambda)}}{\lambda}$

Bayes-optimal AMP

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

Let $\gamma_{\mathrm{AMP}}(\lambda)$ be the smallest strictly positive solution of

$$
\begin{equation*}
\gamma=\lambda^{2}[1-\operatorname{mmse}(\gamma)] . \tag{1}
\end{equation*}
$$

Then the AMP estimate $\hat{\boldsymbol{x}}^{t}=f_{t}\left(\boldsymbol{x}^{t}\right)$ achieves
Overlap : $\lim _{t \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{\left|\left\langle\hat{\boldsymbol{x}}^{t}, \boldsymbol{v}\right\rangle\right|}{\left\|\hat{\boldsymbol{x}}^{t}\right\|_{2}\|\boldsymbol{v}\|_{2}}=\frac{\sqrt{\gamma_{\mathrm{AMP}}(\lambda)}}{\lambda}$

Bayes-optimal overlap [Miolane-Lelarge '16]

For (almost) all $\lambda>0$

$$
\lim _{n \rightarrow \infty} \sup _{\hat{\boldsymbol{x}}(\cdot)} \frac{\left|\left\langle\hat{\boldsymbol{x}}^{t}, \boldsymbol{v}\right\rangle\right|}{\left\|\hat{\boldsymbol{x}}^{t}\right\|_{2}\|\boldsymbol{v}\|_{2}}=\frac{\sqrt{\gamma_{\text {Bayes }}(\lambda)}}{\lambda}
$$

$\gamma_{\text {Bayes }}(\lambda)$: fixed point of (1) that maximizes a free-energy functional

Example: Two-point mixture

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

$$
P_{V}=\varepsilon \delta_{a_{+}}+(1-\varepsilon) \delta_{a_{-}} \quad a_{+}=\sqrt{\frac{1-\varepsilon}{\varepsilon}} \quad a_{-}=-\sqrt{\frac{\varepsilon}{1-\varepsilon}}
$$

Example: Two-point mixture

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

$$
P_{V}=\varepsilon \delta_{a_{+}}+(1-\varepsilon) \delta_{a_{-}} \quad a_{+}=\sqrt{\frac{1-\varepsilon}{\varepsilon}} \quad a_{-}=-\sqrt{\frac{\varepsilon}{1-\varepsilon}} .
$$

Confidence intervals

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

AMP: $\quad \boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)$

- Convergence result tells us that $\boldsymbol{x}^{t} \approx \mu_{t} \boldsymbol{v}+\sigma_{t} \boldsymbol{g}$

Confidence intervals

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

$$
\text { AMP: } \quad \boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)
$$

- Convergence result tells us that $\boldsymbol{x}^{t} \approx \mu_{t} \boldsymbol{v}+\sigma_{t} \boldsymbol{g}$
- State evolution parameters can be estimated:

$$
\begin{aligned}
\hat{\sigma}_{t}^{2} & \equiv \frac{1}{n}\left\|f_{t-1}\left(\boldsymbol{x}^{t-1}\right)\right\|_{2}^{2}, \\
\hat{\mu}_{t}^{2} & =\frac{1}{n}\left\|\boldsymbol{x}^{t}\right\|_{2}^{2}-\frac{1}{n}\left\|f_{t-1}\left(\boldsymbol{x}^{t-1}\right)\right\|_{2}^{2}
\end{aligned}
$$

Confidence intervals

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

$$
\text { AMP: } \quad \boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-\mathrm{b}_{t} f_{t-1}\left(\boldsymbol{x}^{t-1}\right)
$$

- Convergence result tells us that $\boldsymbol{x}^{t} \approx \mu_{t} \boldsymbol{v}+\sigma_{t} \boldsymbol{g}$
- State evolution parameters can be estimated:

$$
\begin{aligned}
\hat{\sigma}_{t}^{2} & \equiv \frac{1}{n}\left\|f_{t-1}\left(\boldsymbol{x}^{t-1}\right)\right\|_{2}^{2} \\
\hat{\mu}_{t}^{2} & \equiv \frac{1}{n}\left\|\boldsymbol{x}^{t}\right\|_{2}^{2}-\frac{1}{n}\left\|f_{t-1}\left(\boldsymbol{x}^{t-1}\right)\right\|_{2}^{2}
\end{aligned}
$$

- Confidence intervals for coverage level $(1-\alpha)$:

$$
\hat{l}_{i}(\alpha ; t)=\left[\frac{1}{\hat{\mu}_{t}} x_{i}^{t}-\frac{\hat{\sigma}_{t}}{\hat{\mu}_{t}} \Phi^{-1}\left(1-\frac{\alpha}{2}\right), \quad \frac{1}{\hat{\mu}_{t}} x_{i}^{t}+\frac{\hat{\sigma}_{t}}{\hat{\mu}_{t}} \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right]
$$

- Bayes-optimal choice minimizes length of confidence intervals, but requires knowledge of the empirical distribution of \boldsymbol{v}

For $1 \leq i \leq n$,

$$
\hat{l}_{i}(\alpha ; t)=\left[\frac{1}{\hat{\mu}_{t}} x_{i}^{t}-\frac{\hat{\sigma}_{t}}{\hat{\mu}_{t}} \Phi^{-1}\left(1-\frac{\alpha}{2}\right), \quad \frac{1}{\hat{\mu}_{t}} x_{i}^{t}+\frac{\hat{\sigma}_{t}}{\hat{\mu}_{t}} \Phi^{-1}\left(1-\frac{\alpha}{2}\right)\right]
$$

Corollary:

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}\left(v_{i} \in \hat{l}_{i}(\alpha ; t)\right)=1-\alpha \quad \text { almost surely. }
$$

General case

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

- Assume k_{*} eigenvectors corresponding to outliers $\left|\lambda_{i}\right|>1$
- Outliers can be estimated from \boldsymbol{A}, as $z_{i} \rightarrow \lambda_{i}+\lambda_{i}^{-1}$
- Assume empirical distribution of rows of $\boldsymbol{V} \sim P_{\boldsymbol{v}}$

General case

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

- Assume k_{*} eigenvectors corresponding to outliers $\left|\lambda_{i}\right|>1$
- Outliers can be estimated from \boldsymbol{A}, as $z_{i} \rightarrow \lambda_{i}+\lambda_{i}^{-1}$
- Assume empirical distribution of rows of $\boldsymbol{V} \sim P_{\boldsymbol{v}}$

General case

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\top}+\boldsymbol{W}
$$

- Assume k_{*} eigenvectors corresponding to outliers $\left|\lambda_{i}\right|>1$
- Outliers can be estimated from \boldsymbol{A}, as $z_{i} \rightarrow \lambda_{i}+\lambda_{i}^{-1}$
- Assume empirical distribution of rows of $\boldsymbol{V} \sim P_{\boldsymbol{v}}$

$$
\mathrm{AMP}: \quad \boldsymbol{x}^{t+1}=\boldsymbol{A} f_{t}\left(\boldsymbol{x}^{t}\right)-f_{t-1}\left(\boldsymbol{x}^{t-1}\right) \mathrm{B}_{t}^{\top}
$$

- $\boldsymbol{x}^{t} \in \mathbb{R}^{n \times k_{*}}$ are estimates of the outlier eigenvectors
- $f(\cdot ; t): \mathbb{R}^{k_{*}} \rightarrow \mathbb{R}^{k_{*}}$ applied row by row
- $\mathrm{B}_{t}=\frac{1}{n} \sum_{i=1}^{n} \frac{\partial f_{t}}{\partial x}\left(\boldsymbol{x}_{i}^{t}\right)$, where $\frac{\partial f_{t}}{\partial x}$ is Jacobian of $f(\cdot ; t)$

Spectral initialization: $\boldsymbol{x}^{0}=\left[\sqrt{n} \varphi_{1}|\ldots| \sqrt{n} \varphi_{k_{*}}\right]$

Block model with multiple communities

Image from Community detection and stochastic block models by E. Abbe

Block model with multiple communities

Wish to recover vertex labels (colours) from adjacency matrix Image from Community detection and stochastic block models by E. Abbe

A closely related model ...

- Let $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ be vector of vertex labels
- Labels σ_{i} uniformly distributed in $\{1,2,3\}$
- Consider the $n \times n$ matrix \boldsymbol{A}_{0} with entries

$$
A_{0, i j}= \begin{cases}2 / n & \text { if } \sigma_{i}=\sigma_{j} \\ -1 / n & \text { otherwise }\end{cases}
$$

- \boldsymbol{A}_{0} is an orthogonal projector onto a two-dimensional subspace $\Rightarrow \boldsymbol{A}_{0}$ is rank 2

A closely related model ...

- Let $\boldsymbol{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ be vector of vertex labels
- Labels σ_{i} uniformly distributed in $\{1,2,3\}$
- Consider the $n \times n$ matrix \boldsymbol{A}_{0} with entries

$$
A_{0, i j}= \begin{cases}2 / n & \text { if } \sigma_{i}=\sigma_{j} \\ -1 / n & \text { otherwise }\end{cases}
$$

- \boldsymbol{A}_{0} is an orthogonal projector onto a two-dimensional subspace $\Rightarrow \boldsymbol{A}_{0}$ is rank 2

Wish to estimate \boldsymbol{A}_{0} from noisy version:

$$
\boldsymbol{A}=\lambda \boldsymbol{A}_{0}+\boldsymbol{W}
$$

- Degenerate eigenvalues: $\lambda_{1}=\lambda_{2}=\lambda>1$
- W $\sim \operatorname{GOE}(n)$
- A similar to rescaled adjacency matrix in block model

AMP

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{V} \boldsymbol{V}^{\top}+\boldsymbol{w}
$$

Spectral initialization: $\boldsymbol{x}^{0}=\left[\begin{array}{ll}\sqrt{n} \varphi_{1} & \sqrt{n} \varphi_{2}\end{array}\right]$
Main result

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \psi\left(\boldsymbol{V}_{i}, \boldsymbol{x}_{i}^{t}\right)=\mathbb{E}\left\{\psi\left(\underline{\boldsymbol{V}}, \boldsymbol{M}_{t} \underline{V}+\boldsymbol{Q}_{t}^{1 / 2} \underline{G}\right)\right\} \quad \text { a.s. }
$$

AMP

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{V}^{\top}+\boldsymbol{w}
$$

Spectral initialization: $\boldsymbol{x}^{0}=\left[\begin{array}{ll}\sqrt{n} \varphi_{1} & \sqrt{n} \varphi_{2}\end{array}\right]$

Main result

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \psi\left(\boldsymbol{V}_{i}, \boldsymbol{x}_{i}^{t}\right)=\mathbb{E}\left\{\psi\left(\underline{V}, \boldsymbol{M}_{t} \underline{V}+\boldsymbol{Q}_{t}^{1 / 2} \underline{G}\right)\right\} \quad \text { a.s. }
$$

State evolution: $\boldsymbol{M}_{0}=\left(\boldsymbol{x}^{0}\right)^{\top} \boldsymbol{V}$ and $\boldsymbol{Q}_{0}=\lambda^{-1} \boldsymbol{I} \in \mathbb{R}^{2 \times 2}$

$$
\begin{aligned}
\boldsymbol{M}_{t+1} & =\lambda \mathbb{E}\left\{f_{t}\left(\boldsymbol{M}_{t} \underline{V}+\boldsymbol{Q}_{t}^{1 / 2} \underline{G}\right) \underline{V}^{\top}\right\}, \\
\boldsymbol{Q}_{t+1} & =\mathbb{E}\left\{f_{t}\left(\boldsymbol{M}_{t} \underline{V}+\boldsymbol{Q}_{t}^{1 / 2} \boldsymbol{G}\right) f_{t}\left(\boldsymbol{M}_{t} \underline{V}+\boldsymbol{Q}_{t}^{1 / 2} \underline{G}\right)^{\top}\right\} .
\end{aligned}
$$

Since $\boldsymbol{V} \boldsymbol{V}^{\top}=\boldsymbol{V} \boldsymbol{R} \boldsymbol{R}^{\top} \boldsymbol{V}^{\top}$ for any 2×2 rotation matrix \boldsymbol{R} \Rightarrow state evolution starts from a random initial condition

$$
\boldsymbol{M}_{0}=\left(\boldsymbol{x}^{0}\right)^{\top} \boldsymbol{V} \stackrel{d}{=} \sqrt{1-\lambda^{-2}} \boldsymbol{R}
$$

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{V} \boldsymbol{V}^{\top}+\boldsymbol{W}
$$

Gaussian block model with $\lambda=1.5, \quad n=6000$

Summary

$$
\boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\top}+\boldsymbol{W}
$$

AMP with spectral initialization

- Distributional property of the iterates gives succinct performance characterization via state evolution
- Can be used to construct confidence intervals
- AMP can achieve Bayes-optimal accuracy

Extensions and Future work

- Can be extended to rectangular low-rank matrix model: $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}+\boldsymbol{W}$
- AMP with spectral initialization for generalized linear models, e.g., phase retrieval
https://arxiv.org/abs/1711.01682

[^0]: [Alon, Krivelivich, Sudakov '98], . . .

[^1]: [Alon, Krivelivich, Sudakov '98], . . .

