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Symmetric Low-rank Model

A =
k∑

i=1

λiv ivT
i + W ∈ Rn×n

I λ1 ≥ λ2 ≥ . . . ≥ λk are deterministic scalars

I v1, . . . , vk ∈ Rn are orthonormal vectors (“spikes”)

I W is a symmetric noise matrix

GOAL: To estimate the vectors v1, . . . , vk from A
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Rectangular Low-rank model

A =
k∑

i=1

λiu ivT
i + W ∈ Rm×n

I λ1 ≥ λ2 ≥ . . . ≥ λk are deterministic scalars

I u1, . . . ,uk ∈ Rm are left singular vectors

v1, . . . , vk ∈ Rn are right singular vectors

I W is a noise matrix

GOAL: Estimate the singular vectors u1, . . . ,uk and v1, . . . , vk
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Applications

≈A U

VT

n× d n× k

k × d

Topic Modelling

I Each row of A is a document

I Each row of V T is a topic

I Each document convex combination of k topics

[Blei, Ng, Jordan ’03]
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Applications

≈A U

VT

n× d n× k

k × d

Collaborative filtering

I A contains ratings of users for items (e.g, films or books)

I Rows represent users, columns represent items

I Each rating is a combination of weights corresponding to a
small number of factors
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Hidden clique

44 E. W. TRAMEL, S. KUMAR, A. GIURGIU, AND A. MONTANARI
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(a) A random graph with a planted
clique.
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(b) The same graph, but with the ver-
tices shu✏ed.
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(c) Retrieving the clique in the shuf-
fled graph

On the other hand, if i 2 S, then Di ⇠ k�1+Binom(n�k, 1/2). Hence, by a similar
union bound

min
i2S

Di �
n + k

2
�
r

(1 + "0)
n log k

2
. (143)

The claim follows by using together the above, and selecting a suitable value "0. ⇤
For k too small, the problem becomes statistically intractable because the planted

clique is not the unique clique of size k. Hence no estimator can distinguish between
the set S and another set S 0 that supports a di↵erent (purely random) clique. The
next theorem characterizes this statistical threshold.

Proposition 2. Let " > 0 be fixed. Then, for k < 2(1 � ") log2 n any estimator bS is

such that bS 6= S with probability converging to one as n ! 1.

Viceversa, for k < 2(1� ") log2 n there exists an estimator bS such that bS = S with
probability converging to one as n ! 1.

Proof. We will not present a complete proof but only sketch the fundamental reason
for a threshold k ⇡ 2 log2 n and leave to the reader the task of filling the details.

Image from Statistical Estimation: From Denoising to Sparse Regression
and Hidden Cliques by A. Montanari

[Alon, Krivelivich, Sudakov ’98], . . .
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For hidden clique S , adjacency matrix has the form
A = 1S1T

S + W

[Alon, Krivelivich, Sudakov ’98], . . .
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Symmetric Spiked Model

A =
k∑

i=1

λiv ivT
i + W ∈ Rn×n

I λ1 ≥ λ2 ≥ . . . ≥ λk are deterministic scalars

I v1, . . . , vk ∈ Rn are orthonormal vectors (“spikes”)

I W ∼ GOE(n) ⇒ W symmetric with

(Wii )i≤n ∼i .i .d . N(0, 2n ) and (Wij)i<j≤n ∼i .i .d . N(0, 1n )
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Spectrum of spiked matrix

A =
k∑

i=1

λiv ivT
i + W

Random matrix theory and the ‘BBAP’ phase transition :

I Bulk of eigenvalues of A in [−2, 2] distributed according to
Wigner’s semicircle

I Outlier eigenvalues corresponding to |λi |’s greater than 1:

zi → λi +
1

λi
> 2

I Eigenvectors ϕi corresponding to outliers zi satisfy

|〈ϕi , v i 〉| →
√

1− 1

λ2i

[Baik, Ben Arous, Péché ’05], [Baik, Silverstein ’06], [Capitaine,
Donati-Martin, Féral ’09], [Benaych-Georges and Nadakuditi ’11], . . . 7 / 33



Structural information

A =
k∑

i=1

λiv ivT
i + W

When v i ’s are unstructured, e.g., drawn uniformly at random from
the unit sphere,

I Best estimator of v i is the ith eigenvector ϕi

I If |λi | ≥ 1, then |〈v i , ϕi 〉| →
√

1− 1
λ2i

But we often have structural information about v i ’s

I For example, v i ’s may be sparse, bounded, non-negative etc.

I Relevant in sparse PCA, non-negative PCA, hidden clique,
community detection under stochastic block model, . . .

I Can improve on spectral methods
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Prior on eigenvectors

A =
k∑

i=1

λiv ivT
i + W ≡ V ΛV T + W

V = [v1 v2 . . . vk ] Rn×k

If each row of V is ∼i .i .d PV , then Bayes-optimal estimator (for
squared error loss) is

V̂ Bayes = E [V | A]

I Generally not computable

I Closed-form expressions for asymptotic Bayes risk

[Deshpande, Montanari ’14], [Barbier et al. ’16], [Lesieur et al. ’17],
[Miolane, Lelarge ’16] . . .
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Computable estimators

A =
k∑

i=1

λiv ivT
i + W ≡ V ΛV T + W

I Convex relaxations generally do not achieve Bayes-optimal
performance [Javanmard, Montanari, Ricci-Tersinghi ’16]

I MCMC can approximate Bayes estimator, but can have large
mixing time and hard to analyze

In this talk

Approximate Message Passing (AMP) algorithm to estimate V
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Rank one spiked model

A =
λ

n
vvT + W , v ∼i .i .d . PV , EV 2 = 1

Power iteration for principal eigenvector:

x t+1 = Ax t , with x0 chosen at random

AMP:

x t+1 = A ft(x t)− bt ft−1(x t−1), bt =
1

n

n∑

i=1

f ′t (x ti )

I Non-linear function ft : R→ R chosen based on structural
info on v

I Memory term ensures a nice distributional property for the
iterates in high dimensions

I Can be derived via approximation of belief propagation
equations
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State evolution

x t+1 = A ft(x t)− bt ft−1(x t−1), with bt =
1

n

n∑

i=1

f ′t (x ti )

If we initialize with x0 independent of A, then as n→∞:

x t −→ µtv + σtg

I g ∼i .i .d . N(0, 1), independent of v ∼i .i .d . PV

I Scalars µt , σ
2
t recursively determined as

µt+1 = λE[V ft(µtV + σtG )], σ2t+1 = E[ft(µtV + σtG )2]

I Initialize with µ0 = 1
n |E〈x0, v〉|, σ20 = EV 2 − µ20

[Bayati,Montanari ’11], [Rangan, Fletcher ’12], [Deshpande, Montanari ’14]
12 / 33



State evolution

x t+1 = A ft(x t)− bt ft−1(x t−1), with bt =
1

n

n∑

i=1

f ′t (x ti )

If we initialize with x0 independent of A, then as n→∞:

x t −→ µtv + σtg

I g ∼i .i .d . N(0, 1), independent of v ∼i .i .d . PV

I Scalars µt , σ
2
t recursively determined as

µt+1 = λE[V ft(µtV + σtG )], σ2t+1 = E[ft(µtV + σtG )2]

I Initialize with µ0 = 1
n |E〈x0, v〉|, σ20 = EV 2 − µ20

[Bayati,Montanari ’11], [Rangan, Fletcher ’12], [Deshpande, Montanari ’14]
12 / 33



Bayes-optimal AMP
Assuming x t = µtv +σtg, choose ft(y) = λE[V | µtV +σtG = y ]

State evolution becomes γt+1 = λ2
{

1−mmse(γt)
}

with
µt = σ2t = γt

PV ∼ uniform{1,−1}, λ =
√

2

Initial value γ0 ∝ 1
n |E〈x0, v〉|, what is limt→∞ γt?

13 / 33
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Fixed points of state evolution

I If E〈x0, v〉 = 0, then γt = 0 is an (unstable) fixed point.

I This is the case when v has zero mean, as x0 is independent
of v

14 / 33



Spectral Initialization
A =

λ

n
vvT + W , λ > 1

I Compute ϕ1, the principal eigenvector of A
I Run AMP with initialization x0 =

√
nϕ1

I γ0 > 0 as 1
n |E〈x0, v〉| →

√
1− λ−2

15 / 33



AMP with spectral initialization

A =
λ

n
vvT + W

x t+1 = A ft(x t) − bt ft−1(x t−1), x0 =
√
nϕ1

Existing AMP analysis does not apply for initialization x0

correlated with v
16 / 33



Standard AMP analysis

With W ∼ GOE(n), consider

ht+1 = W ft(ht) − bt ft−1(ht−1)

Initialised with h0 independent of W . Let ϑt := {h0, . . . ,ht}

I Conditional distribution

W |ϑt
d
= E[W | ϑt ] + P⊥ϑtW̃P⊥ϑt

I By induction, show that for t ≥ 0:

ht+1 =
t∑

i=0

αihi + g t + ∆t

ht+1 d≈ τtg τ2t = E[ft(τt−1G )2], τ20 = ‖f (h0)‖2/n

[Bolthausen ’10], [Bayati-Montanari ’11], [Rush-Venkataramanan ’16]
17 / 33



Standard AMP analysis

With W ∼ GOE(n), consider

ht+1 = W ft(ht) − bt ft−1(ht−1)

Initialised with h0 independent of W . Let ϑt := {h0, . . . ,ht}
I Conditional distribution

W |ϑt
d
= E[W | ϑt ] + P⊥ϑtW̃P⊥ϑt

I By induction, show that for t ≥ 0:

ht+1 =
t∑

i=0

αihi + g t + ∆t

ht+1 d≈ τtg τ2t = E[ft(τt−1G )2], τ20 = ‖f (h0)‖2/n

[Bolthausen ’10], [Bayati-Montanari ’11], [Rush-Venkataramanan ’16]
17 / 33



Standard AMP analysis

With W ∼ GOE(n), consider

ht+1 = W ft(ht) − bt ft−1(ht−1)

Initialised with h0 independent of W . Let ϑt := {h0, . . . ,ht}
I Conditional distribution

W |ϑt
d
= E[W | ϑt ] + P⊥ϑtW̃P⊥ϑt

I By induction, show that for t ≥ 0:

ht+1 =
t∑

i=0

αihi + g t + ∆t

ht+1 d≈ τtg τ2t = E[ft(τt−1G )2], τ20 = ‖f (h0)‖2/n

[Bolthausen ’10], [Bayati-Montanari ’11], [Rush-Venkataramanan ’16]
17 / 33



Standard AMP analysis

With W ∼ GOE(n), consider

ht+1 = W ft(ht) − bt ft−1(ht−1)

Initialised with h0 independent of W . Let ϑt := {h0, . . . ,ht}
I Conditional distribution

W |ϑt
d
= E[W | ϑt ] + P⊥ϑtW̃P⊥ϑt

I By induction, show that for t ≥ 0:

ht+1 =
t∑

i=0

αihi + g t + ∆t

ht+1 d≈ τtg τ2t = E[ft(τt−1G )2], τ20 = ‖f (h0)‖2/n

[Bolthausen ’10], [Bayati-Montanari ’11], [Rush-Venkataramanan ’16]
17 / 33



AMP with spectral initialization

A =
λ

n
vvT + W

Let (ϕ1, z1) be principal eigenvector and eigenvalue of A

x t+1 = A ft(x t) − bt ft−1(x t−1)

initialised with x0 =
√
nϕ1

We write

A = z1ϕ1ϕ
T
1 + P⊥

(
λ

n
vvT + W

)
P⊥

I P⊥ = I −ϕ1ϕ
T
1

Instead of A, we will analyze AMP on

Ã = z1ϕ1ϕ
T
1 + P⊥

(
λ

n
vvT + W̃

)
P⊥

I P⊥ = I −ϕ1ϕ
T
1

I W̃ ∼ GOE(n) is independent of W

1. Conditioned on z1 and (ϕT
1 v)2 being close to limiting values,

total variation distance between A and Ã is small
2. Analyze AMP on Ã by extending standard AMP analysis

18 / 33
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Model assumptions

A =
λ

n
vvT + W

Let v = v(n) ∈ Rn be a sequence such that the empirical
distribution of entries of v(n) converges weakly to PV ,

Performance of any estimator v̂ measured via loss function
ψ : R× R→ R:

ψ(v , v̂) =
1

n

n∑

i=1

ψ(vi , v̂i )

ψ assumed to be pseudo-Lipschitz:

|ψ(x)− ψ(y)| ≤ C‖x − y‖2 (1 + ‖x‖2 + ‖y‖2), ∀x , y ∈ R2

L2 loss, L1 loss are both pseudo-Lipschitz

19 / 33
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Result for rank one case

A =
λ

n
vvT + W

Theorem: Let λ > 1. Consider the AMP

x t+1 = A ft(x t) − bt ft−1(x t−1)

I Assume ft : R→ R is Lipschitz continuous

I Initialize with x0 =
√
nϕ1

Then for any pseudo-Lipschitz loss function ψ and t ≥ 0,

lim
n→∞

1

n

n∑

i=1

ψ(vi , x
t
i ) = E {ψ(V , µtV + σtG )} a.s.

State evolution parameters: µ0 =
√

1− λ−2, σ0 = 1/λ,

µt+1 = λE[V ft(µtV + σtG )], σ2t+1 = E[ft(µtV + σtG )2],

20 / 33
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x t+1 = A ft(x t) − bt ft−1(x t−1)

I Assume ft : R→ R is Lipschitz continuous

I Initialize with x0 =
√
nϕ1
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Proof Sketch

True vs conditional model

A =
λ

n
vvT + W

Ã = z1ϕ1ϕ
T
1 + P⊥

(
λ

n
vvT + W̃

)
P⊥

Lemma

For (z1,ϕ1) ∈
{
|z1 − (λ+ λ−1)| ≤ ε, (ϕT

1 v)2 ≥ 1− λ−2 − ε
}
,

we have

sup
(z Ŝ ,ΦŜ )∈Eε

∥∥∥P
(
A ∈ ·

∣∣z1,ϕ1

)
− P

(
Ã ∈ ·

∣∣z1,ϕ1

)∥∥∥
TV

≤ 1

c(ε)
e−nc(ε)
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AMP on conditional model

Ã = z1ϕ1ϕ
T
1 + P⊥

(
λ

n
vvT + W̃

)
P⊥

AMP with Ã instead of A:

x̃ t+1 = Ã f (x̃ t ; t)− bt f (x̃ t−1; t − 1), x̃0 =
√
nϕ1

Analyze using existing AMP analysis + results from random matrix
theory

22 / 33



Bayes-optimal AMP

A =
λ

n
vvT + W

x t+1 = A ft(x t) − bt ft−1(x t−1)

I Bayes-optimal choice ft(y) = λE(V | γt V +
√
γt G = y)

I State evolution:

γt+1 = λ2
{

1−mmse(γt)
}
, γ0 = λ2 − 1

where mmse(γ) = E
{[
V − E(V | √γ V + G )

]2}

I µt = σ2t = γt
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Bayes-optimal AMP

A =
λ

n
vvT + W

Let γAMP(λ) be the smallest strictly positive solution of

γ = λ2[1−mmse(γ)]. (1)

Then the AMP estimate x̂ t = ft(x t) achieves

lim
t→∞

lim
n→∞

min
s∈{+1,−1}

1

n
‖x̂ t − sv‖22 = 1− γAMP(λ)

λ2

Bayes-optimal overlap [Miolane-Lelarge ’16]

For (almost) all λ > 0

lim
n→∞

sup
x̂( · )

|〈x̂ t , v〉|
‖x̂ t‖2‖v‖2

=

√
γBayes(λ)

λ

γBayes(λ): fixed point of (1) that maximizes a free-energy
functional
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Example: Two-point mixture

A =
λ

n
vvT + W

PV = ε δa+ + (1− ε)δa− a+ =

√
1− ε
ε

a− = −
√

ε

1− ε .

ε = 0.5
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Confidence intervals

A =
λ

n
vvT + W

AMP: x t+1 = A ft(x t)− bt ft−1(x t−1)

I Convergence result tells us that x t ≈ µtv + σtg

I State evolution parameters can be estimated:

σ̂2t ≡
1

n

∥∥ft−1(x t−1)
∥∥2
2
,

µ̂2t ≡
1

n

∥∥x t
∥∥2
2
− 1

n

∥∥ft−1(x t−1)
∥∥2
2
.

I Confidence intervals for coverage level (1− α):

Îi (α; t) =

[
1

µ̂t
x ti −

σ̂t
µ̂t

Φ−1
(

1− α

2

)
,

1

µ̂t
x ti +

σ̂t
µ̂t

Φ−1
(

1− α

2

)]

I Bayes-optimal choice minimizes length of confidence intervals,
but requires knowledge of the empirical distribution of v
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For 1 ≤ i ≤ n,

Îi (α; t) =

[
1

µ̂t
x ti −

σ̂t
µ̂t

Φ−1
(

1− α

2

)
,

1

µ̂t
x ti +

σ̂t
µ̂t

Φ−1
(

1− α

2

)]

Corollary:

lim
n→∞

1

n

n∑

i=1

I
(
vi ∈ Îi (α; t)

)
= 1− α almost surely.
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General case

A =
k∑

i=1

λiv ivT
i + W ≡ V ΛV T + W .

I Assume k∗ eigenvectors corresponding to outliers |λi | > 1
I Outliers can be estimated from A, as zi → λi + λ−1i
I Assume empirical distribution of rows of V ∼ PV

AMP : x t+1 = Aft(x t)− ft−1(x t−1) BT
t

I x t ∈ Rn×k∗ are estimates of the outlier eigenvectors
I f (·; t) : Rk∗ → Rk∗ applied row by row
I Bt = 1

n

∑n
i=1

∂ft
∂x (x t

i ), where ∂ft
∂x is Jacobian of f (·; t)

Spectral initialization: x0 =
[√

nϕ1 | . . . |
√
nϕk∗

]
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Block model with multiple communities

Figure 1: The above two graphs are the same graph re-organized and drawn from the
SBM model with 1000 vertices, 5 balanced communities, within-cluster probability
of 1/50 and across-cluster probability of 1/1000. The goal of community detection
in this case is to obtain the right graph (with five communities) from the left graph
(scrambled) up to some level of accuracy. In such a context, community detection
may be called graph clustering. In general, communities may not only refer to denser
clusters but more generally to groups of vertices that behave similarly.

The goal of this monograph is to describe recent developments aiming at answering
these questions in the context of block models. Block models are a family of
random graphs with planted clusters. The “mother model” is the stochastic block
model (SBM), which has been widely employed as a canonical model for community
detection. It is arguably the simplest model of a graph with communities (see
definitions in the next section). Since the SBM is a generative model, it benefits from
a ground truth for the communities, which allows to consider the previous questions
in a formal context. As any model, it is not necessarily realistic, but it is insightful -
judging for example from the powerful algorithms that have emerged from its study.

In a sense, the SBM plays a similar role to the discrete memoryless channel (DMC)
in information theory. While the task of modelling external noise may be more
amenable to simplifications that real data sets, the SBM captures some of the key
bottleneck phenomena for community detection and admits many possible refinements
that improve the fit to real data. Our focus will be here on the fundamental
understanding of the core SBM, without diving too much into the refined extensions.

The core SBM is defined as follows. For positive integers k, n, a probability

5

Image from Community detection and stochastic block models by E. Abbe
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Wish to recover vertex labels (colours) from adjacency matrix

Image from Community detection and stochastic block models by E. Abbe
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A closely related model . . .
I Let σ = (σ1, . . . , σn) be vector of vertex labels

I Labels σi uniformly distributed in {1, 2, 3}
I Consider the n × n matrix A0 with entries

A0,ij =

{
2/n if σi = σj

−1/n otherwise.

I A0 is an orthogonal projector onto a two-dimensional
subspace ⇒ A0 is rank 2

Wish to estimate A0 from noisy version:

A = λA0 + W

I Degenerate eigenvalues: λ1 = λ2 = λ > 1

I W ∼ GOE(n)

I A similar to rescaled adjacency matrix in block model
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AMP

A =
λ

n
VV T + W

Spectral initialization: x0 = [
√
nϕ1

√
nϕ2]

Main result

lim
n→∞

1

n

n∑

i=1

ψ(V i , x t
i ) = E

{
ψ(V , M tV + Q1/2

t G )
}

a.s.

State evolution: M0 = (x0)TV and Q0 = λ−1I ∈ R2×2

M t+1 = λE
{
ft(M tV + Q1/2

t G )V T
}
,

Qt+1 = E
{
ft(M tV + Q1/2

t G )ft(M tV + Q1/2
t G )T

}
.

Since VV T = VRRTV T for any 2× 2 rotation matrix R
⇒ state evolution starts from a random initial condition

M0 = (x0)TV d
=
√

1− λ−2R
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A =
λ

n
VV T + W

Gaussian block model with λ = 1.5, n = 6000

t
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Summary

A = V ΛV T + W

AMP with spectral initialization

I Distributional property of the iterates gives succinct
performance characterization via state evolution

I Can be used to construct confidence intervals

I AMP can achieve Bayes-optimal accuracy

Extensions and Future work

I Can be extended to rectangular low-rank matrix model:
A = UΣV T + W

I AMP with spectral initialization for generalized linear models,
e.g., phase retrieval

https://arxiv.org/abs/1711.01682
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