Low-rank Matrix Estimation via Approximate Message Passing

Ramji Venkataramanan Department of Engineering

(Joint work with Andrea Montanari)

October 31, 2018

CCIMI Seminar

1/33

Symmetric Low-rank Model

$$\boldsymbol{A} = \sum_{i=1}^{k} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}} + \boldsymbol{W} \in \mathbb{R}^{n \times n}$$

• $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_k$ are deterministic scalars

- ▶ $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^n$ are orthonormal vectors ("spikes")
- W is a symmetric noise matrix

GOAL: To estimate the vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k$ from \boldsymbol{A}

Rectangular Low-rank model

$$\boldsymbol{A} = \sum_{i=1}^{k} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\mathsf{T}} + \boldsymbol{W} \in \mathbb{R}^{m \times n}$$

• $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k$ are deterministic scalars

- ▶ $u_1, ..., u_k \in \mathbb{R}^m$ are left singular vectors $v_1, ..., v_k \in \mathbb{R}^n$ are right singular vectors
- **W** is a noise matrix

GOAL: Estimate the singular vectors $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_k$ and $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k$

Applications

Topic Modelling

- Each row of A is a document
- Each row of V^T is a topic
- Each document convex combination of k topics

[Blei, Ng, Jordan '03]

Applications

Collaborative filtering

- A contains ratings of users for items (e.g, films or books)
- Rows represent users, columns represent items
- Each rating is a combination of weights corresponding to a small number of factors

Image from Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques by A. Montanari

[Alon, Krivelivich, Sudakov '98], ...

Image from Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques by A. Montanari

[Alon, Krivelivich, Sudakov '98], ...

Image from Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques by A. Montanari

[Alon, Krivelivich, Sudakov '98], ...

For hidden clique S, adjacency matrix has the form $\textbf{\textit{A}} = \textbf{1}_{S}\textbf{1}_{S}^{\mathsf{T}} + \textbf{\textit{W}}$

[Alon, Krivelivich, Sudakov '98], ...

Symmetric Spiked Model

$$\boldsymbol{A} = \sum_{i=1}^{k} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}} + \boldsymbol{W} \quad \in \mathbb{R}^{n \times n}$$

- $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_k$ are deterministic scalars
- $\mathbf{v}_1, \ldots, \mathbf{v}_k \in \mathbb{R}^n$ are orthonormal vectors ("spikes")
- ► $\boldsymbol{W} \sim \text{GOE}(n) \Rightarrow \boldsymbol{W}$ symmetric with $(W_{ii})_{i \leq n} \sim_{i.i.d.} N(0, \frac{2}{n})$ and $(W_{ij})_{i < j \leq n} \sim_{i.i.d.} N(0, \frac{1}{n})$

・ロト ・ ア・ ・ ヨト ・ ヨー・ うらの

6/33

Spectrum of spiked matrix

$$oldsymbol{A} = \sum_{i=1}^k \lambda_i oldsymbol{v}_i oldsymbol{v}_i^\mathsf{T} + oldsymbol{W}$$

Random matrix theory and the 'BBAP' phase transition :

- ► Bulk of eigenvalues of A in [-2,2] distributed according to Wigner's semicircle
- Outlier eigenvalues corresponding to $|\lambda_i|$'s greater than 1:

$$z_i o \lambda_i + rac{1}{\lambda_i} > 2$$

• Eigenvectors φ_i corresponding to outliers z_i satisfy

$$|\langle oldsymbol{arphi}_i, \, oldsymbol{v}_i
angle|
ightarrow \sqrt{1 - rac{1}{\lambda_i^2}}$$

[Baik, Ben Arous, Péché '05], [Baik, Silverstein '06], [Capitaine, Donati-Martin, Féral '09], [Benaych-Georges and Nadakuditi '11], ... 7/33

Structural information

$$oldsymbol{A} = \sum_{i=1}^k \lambda_i oldsymbol{v}_i oldsymbol{v}_i^\mathsf{T} + oldsymbol{W}$$

When \mathbf{v}_i 's are unstructured, e.g., drawn uniformly at random from the unit sphere,

• Best estimator of \mathbf{v}_i is the *i*th eigenvector φ_i

• If
$$|\lambda_i| \geq 1$$
, then $|\langle oldsymbol{v}_i, \, oldsymbol{arphi}_i
angle| o \sqrt{1 - rac{1}{\lambda_i^2}}$

Structural information

$$oldsymbol{A} = \sum_{i=1}^k \lambda_i oldsymbol{v}_i oldsymbol{v}_i^\mathsf{T} + oldsymbol{W}$$

When \mathbf{v}_i 's are unstructured, e.g., drawn uniformly at random from the unit sphere,

• Best estimator of \boldsymbol{v}_i is the *i*th eigenvector $\boldsymbol{\varphi}_i$

• If
$$|\lambda_i| \geq 1$$
, then $|\langle m{v}_i, \, m{arphi}_i
angle| o \sqrt{1 - rac{1}{\lambda_i^2}}$

But we often have structural information about v_i 's

- For example, v_i 's may be sparse, bounded, non-negative etc.
- Relevant in sparse PCA, non-negative PCA, hidden clique, community detection under stochastic block model, ...
- Can improve on spectral methods

Prior on eigenvectors

$$\boldsymbol{A} = \sum_{i=1}^{k} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}} + \boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\mathsf{T}} + \boldsymbol{W}$$
$$\boldsymbol{V} = [\boldsymbol{v}_1 \ \boldsymbol{v}_2 \dots \boldsymbol{v}_k] \quad \mathbb{R}^{n \times k}$$

If each row of **V** is $\sim_{i.i.d} P_{\underline{V}}$, then Bayes-optimal estimator (for squared error loss) is

$$\widehat{oldsymbol{\mathcal{V}}}_{\mathsf{Bayes}}\,=\,\mathbb{E}\left[oldsymbol{\mathcal{V}}\midoldsymbol{\mathcal{A}}
ight]$$

- Generally not computable
- Closed-form expressions for asymptotic Bayes risk

[Deshpande, Montanari '14], [Barbier *et al.* '16], [Lesieur *et al.* '17], [Miolane, Lelarge '16] ...

Computable estimators

$$\boldsymbol{A} = \sum_{i=1}^{k} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}} + \boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\mathsf{T}} + \boldsymbol{W}$$

- Convex relaxations generally do not achieve Bayes-optimal performance [Javanmard, Montanari, Ricci-Tersinghi '16]
- MCMC can approximate Bayes estimator, but can have large mixing time and hard to analyze

Computable estimators

$$\boldsymbol{A} = \sum_{i=1}^{k} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}} + \boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\mathsf{T}} + \boldsymbol{W}$$

- Convex relaxations generally do not achieve Bayes-optimal performance [Javanmard, Montanari, Ricci-Tersinghi '16]
- MCMC can approximate Bayes estimator, but can have large mixing time and hard to analyze

In this talk

Approximate Message Passing (AMP) algorithm to estimate V

Rank one spiked model

$$\boldsymbol{A} = \frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \boldsymbol{W}, \qquad \boldsymbol{v} \sim_{i.i.d.} P_{V}, \quad \mathbb{E}V^{2} = 1$$

Power iteration for principal eigenvector: $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$, with \mathbf{x}^0 chosen at random Rank one spiked model

$$\boldsymbol{A} = \frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \boldsymbol{W}, \qquad \boldsymbol{v} \sim_{i.i.d.} P_{V}, \quad \mathbb{E}V^{2} = 1$$

Power iteration for principal eigenvector: $\mathbf{x}^{t+1} = \mathbf{A}\mathbf{x}^t$, with \mathbf{x}^0 chosen at random

AMP:

$$\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - \mathbf{b}_t f_{t-1}(\mathbf{x}^{t-1}), \qquad \mathbf{b}_t = \frac{1}{n} \sum_{i=1}^n f'_t(x_i^t)$$

- Non-linear function f_t : ℝ → ℝ chosen based on structural info on v
- Memory term ensures a nice distributional property for the iterates in high dimensions
- Can be derived via approximation of belief propagation equations

State evolution

$$\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - b_t f_{t-1}(\mathbf{x}^{t-1}), \text{ with } b_t = \frac{1}{n} \sum_{i=1}^n f'_t(x^t_i)$$

If we initialize with x^0 independent of A, then as $n \to \infty$:

 $\mathbf{x}^t \longrightarrow \mu_t \mathbf{v} + \sigma_t \mathbf{g}$

▶
$$\mathbf{g} \sim_{i.i.d.} \mathsf{N}(0,1)$$
, independent of $\mathbf{v} \sim_{i.i.d.} P_V$

[Bayati,Montanari '11], [Rangan, Fletcher '12], [Deshpande, Montanari '14]

State evolution

$$\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - b_t f_{t-1}(\mathbf{x}^{t-1}), \text{ with } b_t = \frac{1}{n} \sum_{i=1}^n f'_t(x^t_i)$$

If we initialize with x^0 independent of A, then as $n \to \infty$:

 $\mathbf{x}^t \longrightarrow \mu_t \mathbf{v} + \sigma_t \mathbf{g}$

- $\mathbf{g} \sim_{i.i.d.} \mathsf{N}(0,1)$, independent of $\mathbf{v} \sim_{i.i.d.} P_V$
- Scalars μ_t, σ_t^2 recursively determined as

 $\mu_{t+1} = \lambda \mathbb{E}[V f_t(\mu_t V + \sigma_t G)], \quad \sigma_{t+1}^2 = \mathbb{E}[f_t(\mu_t V + \sigma_t G)^2]$

• Initialize with $\mu_0 = \frac{1}{n} |\mathbb{E} \langle \mathbf{x}^0, \mathbf{v} \rangle|, \ \sigma_0^2 = \mathbb{E} V^2 - \mu_0^2$

[Bayati,Montanari '11], [Rangan, Fletcher '12], [Deshpande, Montanari '14]

Assuming $\mathbf{x}^t = \mu_t \mathbf{v} + \sigma_t \mathbf{g}$, choose $f_t(y) = \lambda \mathbb{E}[V \mid \mu_t V + \sigma_t G = y]$

Assuming $\mathbf{x}^{t} = \mu_{t}\mathbf{v} + \sigma_{t}\mathbf{g}$, choose $f_{t}(y) = \lambda \mathbb{E}[V \mid \mu_{t}V + \sigma_{t}G = y]$ State evolution becomes $\gamma_{t+1} = \lambda^{2} \{1 - \text{mmse}(\gamma_{t})\}$ with $\mu_{t} = \sigma_{t}^{2} = \gamma_{t}$

13/33

Fixed points of state evolution

- If $\mathbb{E}\langle \mathbf{x}^0, \mathbf{v} \rangle = 0$, then $\gamma_t = 0$ is an (unstable) fixed point.
- ► This is the case when v has zero mean, as x⁰ is independent of v

Spectral Initialization $\boldsymbol{A} = \frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \boldsymbol{W}, \qquad \lambda > 1$

- Compute φ_1 , the principal eigenvector of $oldsymbol{A}$
- ► Run AMP with initialization $\mathbf{x}^0 = \sqrt{n} \varphi_1$

•
$$\gamma_0 > 0$$
 as $\frac{1}{n} |\mathbb{E} \langle \mathbf{x}^0, \mathbf{v} \rangle| \rightarrow \sqrt{1 - \lambda^{-2}}$

15 / 33

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

$$\boldsymbol{A} = \frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \boldsymbol{W}$$

Existing AMP analysis does not apply for initialization x^0 correlated with v

.6 / 33

With $W \sim \text{GOE}(n)$, consider

$$oldsymbol{h}^{t+1} = oldsymbol{W} \, f_t(oldsymbol{h}^t) \, - \, edsymbol{b}_t f_{t-1}(oldsymbol{h}^{t-1})$$

Initialised with \boldsymbol{h}^0 independent of \boldsymbol{W} . Let $\vartheta_t := \{\boldsymbol{h}^0, \dots, \boldsymbol{h}^t\}$

[Bolthausen '10], [Bayati-Montanari '11], [Rush-Venkataramanan '16]

With $\boldsymbol{W} \sim \text{GOE}(n)$, consider

$$\boldsymbol{h}^{t+1} = \boldsymbol{W} f_t(\boldsymbol{h}^t) - b_t f_{t-1}(\boldsymbol{h}^{t-1})$$

Initialised with \boldsymbol{h}^0 independent of \boldsymbol{W} . Let $\vartheta_t := \{\boldsymbol{h}^0, \dots, \boldsymbol{h}^t\}$

Conditional distribution

$$\boldsymbol{W}|_{\vartheta_t} \stackrel{d}{=} \mathbb{E}[\boldsymbol{W} \mid \vartheta_t] + \boldsymbol{P}_{\vartheta_t}^{\perp} \tilde{\boldsymbol{W}} \boldsymbol{P}_{\vartheta_t}^{\perp}$$

[Bolthausen '10], [Bayati-Montanari '11], [Rush-Venkataramanan '16]

With $W \sim \text{GOE}(n)$, consider

$$\boldsymbol{h}^{t+1} = \boldsymbol{W} f_t(\boldsymbol{h}^t) - b_t f_{t-1}(\boldsymbol{h}^{t-1})$$

Initialised with \boldsymbol{h}^0 independent of \boldsymbol{W} . Let $\vartheta_t := \{\boldsymbol{h}^0, \dots, \boldsymbol{h}^t\}$

Conditional distribution

$$\boldsymbol{W}|_{\vartheta_t} \stackrel{d}{=} \mathbb{E}[\boldsymbol{W} \mid \vartheta_t] + \boldsymbol{P}_{\vartheta_t}^{\perp} \tilde{\boldsymbol{W}} \boldsymbol{P}_{\vartheta_t}^{\perp}$$

• By induction, show that for $t \ge 0$:

$$\boldsymbol{h}^{t+1} = \sum_{i=0}^{t} \alpha_i \boldsymbol{h}^i + \boldsymbol{g}_t + \boldsymbol{\Delta}_t$$

[Bolthausen '10], [Bayati-Montanari '11], [Rush-Venkataramanan '16] → E → E → Q ⊂

With $W \sim \text{GOE}(n)$, consider

$$\boldsymbol{h}^{t+1} = \boldsymbol{W} f_t(\boldsymbol{h}^t) - b_t f_{t-1}(\boldsymbol{h}^{t-1})$$

Initialised with \boldsymbol{h}^0 independent of \boldsymbol{W} . Let $\vartheta_t := \{\boldsymbol{h}^0, \dots, \boldsymbol{h}^t\}$

Conditional distribution

$$\boldsymbol{W}|_{\vartheta_t} \stackrel{d}{=} \mathbb{E}[\boldsymbol{W} \mid \vartheta_t] + \boldsymbol{P}_{\vartheta_t}^{\perp} \tilde{\boldsymbol{W}} \boldsymbol{P}_{\vartheta_t}^{\perp}$$

• By induction, show that for $t \ge 0$:

$$\boldsymbol{h}^{t+1} = \sum_{i=0}^{t} \alpha_i \boldsymbol{h}^i + \boldsymbol{g}_t + \boldsymbol{\Delta}_t$$

$$\boldsymbol{h}^{t+1} \stackrel{d}{\approx} \tau_t \boldsymbol{g} \qquad \tau_t^2 = \mathbb{E}[f_t(\tau_{t-1}G)^2], \quad \tau_0^2 = \|f(\boldsymbol{h}^0)\|^2/n$$

[Bolthausen '10], [Bayati-Montanari '11], [Rush-Venkataramanan '16] : () : ()

$$\boldsymbol{A} = rac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \boldsymbol{W}$$

Let $(\boldsymbol{\varphi}_1, z_1)$ be principal eigenvector and eigenvalue of \boldsymbol{A}

$$m{x}^{t+1} = m{A} \, f_t(m{x}^t) \, - \, m{b}_t f_{t-1}(m{x}^{t-1})$$
 initialised with $m{x}^0 = \sqrt{n} \, arphi_1$

)

$$oldsymbol{A} = rac{\lambda}{n} oldsymbol{v} oldsymbol{v}^{\mathsf{T}} + oldsymbol{W}$$

Let (φ_1, z_1) be principal eigenvector and eigenvalue of $oldsymbol{A}$

$$\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - b_t f_{t-1}(\mathbf{x}^{t-1})$$

initialised with ${m x}^0=\sqrt{n}\, {m arphi}_1$

We write

$$\boldsymbol{A} = z_1 \boldsymbol{\varphi}_1 \boldsymbol{\varphi}_1^\mathsf{T} + \boldsymbol{P}^\perp \left(\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^\mathsf{T} + \boldsymbol{W}\right) \boldsymbol{P}^\perp$$

• $\pmb{P}^{\perp}=\pmb{I}-\pmb{arphi}_{1}\pmb{arphi}_{1}^{\mathsf{T}}$

$$oldsymbol{A} = rac{\lambda}{n} oldsymbol{v} oldsymbol{v}^{\mathsf{T}} + oldsymbol{W}$$

Let $(arphi_1, z_1)$ be principal eigenvector and eigenvalue of $oldsymbol{A}$

$$\boldsymbol{x}^{t+1} = \boldsymbol{A} f_t(\boldsymbol{x}^t) - b_t f_{t-1}(\boldsymbol{x}^{t-1})$$

initialised with ${m x}^0=\sqrt{n}\, arphi_1$

Instead of **A**, we will analyze AMP on

$$\tilde{\boldsymbol{A}} = z_1 \varphi_1 \varphi_1^\mathsf{T} + \boldsymbol{P}^\perp \left(\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^\mathsf{T} + \tilde{\boldsymbol{W}} \right) \boldsymbol{P}^\perp$$

- $\boldsymbol{P}^{\perp} = \boldsymbol{I} \varphi_1 \varphi_1^{\mathsf{T}}$ • $\tilde{\boldsymbol{W}} \sim \text{GOE}(n)$ is independent of \boldsymbol{W}
- 1. Conditioned on z_1 and $(\varphi_1^{\mathsf{T}} \mathbf{v})^2$ being close to limiting values, total variation distance between \mathbf{A} and $\tilde{\mathbf{A}}$ is small

$$oldsymbol{A} = rac{\lambda}{n} oldsymbol{v} oldsymbol{v}^{\mathsf{T}} + oldsymbol{W}$$

Let $(arphi_1, z_1)$ be principal eigenvector and eigenvalue of $oldsymbol{A}$

$$\boldsymbol{x}^{t+1} = \boldsymbol{A} f_t(\boldsymbol{x}^t) - b_t f_{t-1}(\boldsymbol{x}^{t-1})$$

initialised with ${m x}^0=\sqrt{n}\, arphi_1$

Instead of **A**, we will analyze AMP on

$$\tilde{\boldsymbol{A}} = z_1 \varphi_1 \varphi_1^\mathsf{T} + \boldsymbol{P}^\perp \left(\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^\mathsf{T} + \tilde{\boldsymbol{W}} \right) \boldsymbol{P}^\perp$$

- ▶ $\boldsymbol{P}^{\perp} = \boldsymbol{I} \varphi_1 \varphi_1^{\mathsf{T}}$ ▶ $\tilde{\boldsymbol{W}} \sim \mathsf{GOE}(n)$ is independent of \boldsymbol{W}
- 1. Conditioned on z_1 and $(\varphi_1^{\mathsf{T}} \mathbf{v})^2$ being close to limiting values, total variation distance between \mathbf{A} and $\tilde{\mathbf{A}}$ is small
- 2. Analyze AMP on \tilde{A} by extending standard AMP analysis

18 / 33

Model assumptions

$$\boldsymbol{A} = \frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \boldsymbol{W}$$

Let $\mathbf{v} = \mathbf{v}(n) \in \mathbb{R}^n$ be a sequence such that the empirical distribution of entries of $\mathbf{v}(n)$ converges weakly to P_V ,

Model assumptions

$$oldsymbol{A} = rac{\lambda}{n} oldsymbol{v} oldsymbol{v}^{\mathsf{T}} + oldsymbol{W}$$

Let $\mathbf{v} = \mathbf{v}(n) \in \mathbb{R}^n$ be a sequence such that the empirical distribution of entries of $\mathbf{v}(n)$ converges weakly to P_V ,

Performance of any estimator $\hat{\boldsymbol{v}}$ measured via loss function $\psi : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$: $\psi(\boldsymbol{v}, \hat{\boldsymbol{v}}) = \frac{1}{n} \sum_{i=1}^{n} \psi(v_i, \hat{v}_i)$

 ψ assumed to be *pseudo-Lipschitz*:

$$|\psi(oldsymbol{x})-\psi(oldsymbol{y})|\leq C\|oldsymbol{x}-oldsymbol{y}\|_2\,(1+\|oldsymbol{x}\|_2+\|oldsymbol{y}\|_2),\qquadoralloldsymbol{x},oldsymbol{y}\in\mathbb{R}^2$$

 L_2 loss, L_1 loss are both pseudo-Lipschitz

Result for rank one case

$$oldsymbol{A} = rac{\lambda}{n} oldsymbol{v} oldsymbol{v}^{\mathsf{T}} + oldsymbol{W}$$

Theorem: Let $\lambda > 1$. Consider the AMP

$$\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - b_t f_{t-1}(\mathbf{x}^{t-1})$$

- Assume $f_t : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous
- Initialize with $\pmb{x}^0 = \sqrt{n} \pmb{arphi}_1$

Then for any pseudo-Lipschitz loss function ψ and $t \ge 0$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\psi(v_i,x_i^t)=\mathbb{E}\left\{\psi(V,\mu_tV+\sigma_tG)\right\}\quad\text{a.s.}$$

Result for rank one case

$$oldsymbol{A} = rac{\lambda}{n} oldsymbol{v} oldsymbol{v}^{\mathsf{T}} + oldsymbol{W}$$

Theorem: Let $\lambda > 1$. Consider the AMP

$$\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - b_t f_{t-1}(\mathbf{x}^{t-1})$$

- Assume $f_t : \mathbb{R} \to \mathbb{R}$ is Lipschitz continuous
- Initialize with $m{x}^0 = \sqrt{n} m{arphi}_1$

Then for any pseudo-Lipschitz loss function ψ and $t \ge 0$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\psi(v_i,x_i^t)=\mathbb{E}\left\{\psi(V,\mu_tV+\sigma_tG)\right\}\quad\text{a.s.}$$

State evolution parameters: $\mu_0 = \sqrt{1 - \lambda^{-2}}, \quad \sigma_0 = 1/\lambda$,

$$\mu_{t+1} = \lambda \mathbb{E}[V f_t(\mu_t V + \sigma_t G)], \quad \sigma_{t+1}^2 = \mathbb{E}[f_t(\mu_t V + \sigma_t G)^2],$$

20/33

Proof Sketch

True vs conditional model

$$\boldsymbol{A} = \frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \boldsymbol{W}$$
$$\tilde{\boldsymbol{A}} = z_1 \varphi_1 \varphi_1^{\mathsf{T}} + \boldsymbol{P}^{\perp} \left(\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \tilde{\boldsymbol{W}}\right) \boldsymbol{P}^{\perp}$$

Lemma

For
$$(z_1, \varphi_1) \in \left\{ |z_1 - (\lambda + \lambda^{-1})| \le \varepsilon, \quad (\varphi_1^{\mathsf{T}} \mathbf{v})^2 \ge 1 - \lambda^{-2} - \varepsilon \right\},$$

we have

$$\sup_{(\boldsymbol{z}_{\hat{S}}, \boldsymbol{\Phi}_{\hat{S}}) \in \mathcal{E}_{\varepsilon}} \left\| \mathbb{P} \big(\boldsymbol{A} \in \cdot | \boldsymbol{z}_{1}, \boldsymbol{\varphi}_{1} \big) - \mathbb{P} \big(\tilde{\boldsymbol{A}} \in \cdot | \boldsymbol{z}_{1}, \boldsymbol{\varphi}_{1} \big) \right\|_{\scriptscriptstyle \mathrm{TV}} \leq \frac{1}{c(\varepsilon)} e^{-nc(\varepsilon)}$$

AMP on conditional model

$$ilde{oldsymbol{A}} = z_1 arphi_1 arphi_1^{\mathsf{T}} + oldsymbol{P}^{\perp} \left(rac{\lambda}{n} oldsymbol{v} oldsymbol{v}^{\mathsf{T}} + ilde{oldsymbol{W}}
ight) oldsymbol{P}^{\perp}$$

AMP with \tilde{A} instead of A:

$$\tilde{\mathbf{x}}^{t+1} = \tilde{\mathbf{A}} f(\tilde{\mathbf{x}}^t; t) - b_t f(\tilde{\mathbf{x}}^{t-1}; t-1), \qquad \tilde{\mathbf{x}}^0 = \sqrt{n} \varphi_1$$

Analyze using existing AMP analysis $+ \mbox{ results from random matrix theory}$

$$\boldsymbol{A} = \frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \boldsymbol{W}$$

$$\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - b_t f_{t-1}(\mathbf{x}^{t-1})$$

► Bayes-optimal choice $f_t(y) = \lambda \mathbb{E}(V \mid \gamma_t V + \sqrt{\gamma_t} G = y)$

State evolution:

$$\gamma_{t+1} = \lambda^2 \{ 1 - \mathsf{mmse}(\gamma_t) \}, \qquad \gamma_0 = \lambda^2 - 1$$

where $\mathsf{mmse}(\gamma) = \mathbb{E} \{ [V - \mathbb{E}(V \mid \sqrt{\gamma} V + G)]^2 \}$
$$\mu_t = \sigma_t^2 = \gamma_t$$

$$oldsymbol{A} = rac{\lambda}{n} oldsymbol{v} oldsymbol{v}^{\mathsf{T}} + oldsymbol{W}$$

Let $\gamma_{\text{AMP}}(\lambda)$ be the *smallest* strictly positive solution of

 $\gamma = \lambda^2 [1 - \mathsf{mmse}(\gamma)]. \tag{1}$

Then the AMP estimate $\hat{\mathbf{x}}^t = f_t(\mathbf{x}^t)$ achieves

$$\lim_{t\to\infty}\lim_{n\to\infty}\min_{s\in\{+1,-1\}}\frac{1}{n}\|\hat{\boldsymbol{x}}^t-\boldsymbol{s}\boldsymbol{\nu}\|_2^2=1-\frac{\gamma_{\text{AMP}}(\lambda)}{\lambda^2}$$

$$\boldsymbol{A} = rac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\mathsf{T}} + \boldsymbol{W}$$

Let $\gamma_{\text{AMP}}(\lambda)$ be the *smallest* strictly positive solution of

 $\gamma = \lambda^2 [1 - \mathsf{mmse}(\gamma)]. \tag{1}$

$$\mathbf{A} = rac{\lambda}{n} \mathbf{v} \mathbf{v}^{\mathsf{T}} + \mathbf{W}$$

Let $\gamma_{\scriptscriptstyle \mathrm{AMP}}(\lambda)$ be the *smallest* strictly positive solution of

 $\gamma = \lambda^2 [1 - \mathsf{mmse}(\gamma)]. \tag{1}$

Then the AMP estimate $\hat{\boldsymbol{x}}^t = f_t(\boldsymbol{x}^t)$ achieves Overlap : $\lim_{t \to \infty} \lim_{n \to \infty} \frac{|\langle \hat{\boldsymbol{x}}^t, \boldsymbol{v} \rangle|}{\|\hat{\boldsymbol{x}}^t\|_2 \|\boldsymbol{v}\|_2} = \frac{\sqrt{\gamma_{\text{AMP}}(\lambda)}}{\lambda}$

Bayes-optimal overlap [Miolane-Lelarge '16]

For (almost) all $\lambda > 0$

$$\lim_{h \to \infty} \sup_{\hat{\boldsymbol{x}}(\,\cdot\,)} \; \frac{|\langle \hat{\boldsymbol{x}}^t, \boldsymbol{\nu} \rangle|}{\|\hat{\boldsymbol{x}}^t\|_2 \|\boldsymbol{\nu}\|_2} = \frac{\sqrt{\gamma_{\text{Bayes}}(\lambda)}}{\lambda}$$

 $\gamma_{\rm Bayes}(\lambda)$: fixed point of (1) that maximizes a free-energy functional

Example: Two-point mixture

Example: Two-point mixture

$$\mathbf{A} = \frac{\lambda}{n} \mathbf{v} \mathbf{v}^{\mathsf{T}} + \mathbf{W}$$

$$P_{V} = \varepsilon \, \delta_{a_{+}} + (1 - \varepsilon) \delta_{a_{-}} \qquad a_{+} = \sqrt{\frac{1 - \varepsilon}{\varepsilon}} \quad a_{-} = -\sqrt{\frac{\varepsilon}{1 - \varepsilon}}.$$

25 / 33

Confidence intervals

$$\mathbf{A} = \frac{\lambda}{n} \mathbf{v} \mathbf{v}^{\mathsf{T}} + \mathbf{W}$$

AMP: $\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - b_t f_{t-1}(\mathbf{x}^{t-1})$

• Convergence result tells us that $\mathbf{x}^t \approx \mu_t \mathbf{v} + \sigma_t \mathbf{g}$

Confidence intervals

$$\mathbf{A} = \frac{\lambda}{n} \mathbf{v} \mathbf{v}^{\mathsf{T}} + \mathbf{W}$$

AMP: $\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - \mathsf{b}_t f_{t-1}(\mathbf{x}^{t-1})$

• Convergence result tells us that $\mathbf{x}^t \approx \mu_t \mathbf{v} + \sigma_t \mathbf{g}$

State evolution parameters can be estimated:

$$\hat{\sigma}_{t}^{2} \equiv \frac{1}{n} \|f_{t-1}(\mathbf{x}^{t-1})\|_{2}^{2},$$
$$\hat{\mu}_{t}^{2} \equiv \frac{1}{n} \|\mathbf{x}^{t}\|_{2}^{2} - \frac{1}{n} \|f_{t-1}(\mathbf{x}^{t-1})\|_{2}^{2}.$$

イロン イヨン イヨン イヨン 三日

26 / 33

Confidence intervals

$$\mathbf{A} = \frac{\lambda}{n} \mathbf{v} \mathbf{v}^{\mathsf{T}} + \mathbf{W}$$

AMP: $\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - \mathsf{b}_t f_{t-1}(\mathbf{x}^{t-1})$

• Convergence result tells us that $\mathbf{x}^t \approx \mu_t \mathbf{v} + \sigma_t \mathbf{g}$

State evolution parameters can be estimated:

$$\hat{\sigma}_{t}^{2} \equiv \frac{1}{n} \|f_{t-1}(\mathbf{x}^{t-1})\|_{2}^{2},$$
$$\hat{\mu}_{t}^{2} \equiv \frac{1}{n} \|\mathbf{x}^{t}\|_{2}^{2} - \frac{1}{n} \|f_{t-1}(\mathbf{x}^{t-1})\|_{2}^{2}.$$

• Confidence intervals for coverage level $(1 - \alpha)$:

$$\hat{l}_i(\alpha;t) = \left[\frac{1}{\hat{\mu}_t} x_i^t - \frac{\hat{\sigma}_t}{\hat{\mu}_t} \Phi^{-1} \left(1 - \frac{\alpha}{2}\right), \quad \frac{1}{\hat{\mu}_t} x_i^t + \frac{\hat{\sigma}_t}{\hat{\mu}_t} \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)\right]$$

 Bayes-optimal choice minimizes length of confidence intervals, but requires knowledge of the empirical distribution of v

For
$$1 \le i \le n$$
,
 $\hat{l}_i(\alpha; t) = \left[\frac{1}{\hat{\mu}_t}x_i^t - \frac{\hat{\sigma}_t}{\hat{\mu}_t}\Phi^{-1}\left(1 - \frac{\alpha}{2}\right), \quad \frac{1}{\hat{\mu}_t}x_i^t + \frac{\hat{\sigma}_t}{\hat{\mu}_t}\Phi^{-1}\left(1 - \frac{\alpha}{2}\right)\right]$

Corollary:

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\mathbb{I}\big(v_i\in\hat{l}_i(\alpha;t)\big)\,=\,1-\alpha\quad\text{almost surely}.$$

<ロ><合><合><合><合><合><合><合><合><合><合><合<</h>

General case

$$\boldsymbol{A} = \sum_{i=1}^{k} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}} + \boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\mathsf{T}} + \boldsymbol{W}$$

• Assume k_* eigenvectors corresponding to outliers $|\lambda_i| > 1$

イロン イロン イヨン イヨン 三日

28 / 33

- Outliers can be estimated from **A**, as $z_i \rightarrow \lambda_i + \lambda_i^{-1}$
- Assume empirical distribution of rows of $m{V}\sim P_{m{V}}$

General case

$$\boldsymbol{A} = \sum_{i=1}^{k} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}} + \boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\mathsf{T}} + \boldsymbol{W}$$

• Assume k_* eigenvectors corresponding to outliers $|\lambda_i| > 1$

イロン イロン イヨン イヨン 三日

28 / 33

- Outliers can be estimated from **A**, as $z_i \rightarrow \lambda_i + \lambda_i^{-1}$
- Assume empirical distribution of rows of $m{V}\sim P_{m{V}}$

General case

$$\boldsymbol{A} = \sum_{i=1}^{k} \lambda_i \boldsymbol{v}_i \boldsymbol{v}_i^{\mathsf{T}} + \boldsymbol{W} \equiv \boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\mathsf{T}} + \boldsymbol{W} \,.$$

- Assume k_* eigenvectors corresponding to outliers $|\lambda_i| > 1$
- Outliers can be estimated from **A**, as $z_i \rightarrow \lambda_i + \lambda_i^{-1}$
- Assume empirical distribution of rows of $m{V}\sim P_{m{V}}$

AMP :
$$\mathbf{x}^{t+1} = \mathbf{A} f_t(\mathbf{x}^t) - f_{t-1}(\mathbf{x}^{t-1}) \mathsf{B}_t^\mathsf{T}$$

x^t ∈ ℝ^{n×k}* are estimates of the outlier eigenvectors
 f(·; t) : ℝ^k* → ℝ^k* applied row by row
 B_t = ¹/_n ∑ⁿ_{i=1} ^{∂ft}/_{∂x}(x^t_i), where ^{∂ft}/_{∂x} is Jacobian of f(·; t)

Spectral initialization:
$$\mathbf{x}^0 = \left[\sqrt{n}\varphi_1 \mid \ldots \mid \sqrt{n}\varphi_{k_*}\right]$$

Block model with multiple communities

Image from Community detection and stochastic block models by E. Abbe > 💿 🗠

Block model with multiple communities

Wish to recover vertex labels (colours) from adjacency matrix

Image from Community detection and stochastic block_models by E. Abbe > 3

29/33

A closely related model ...

- Let $\boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_n)$ be vector of vertex labels
- Labels σ_i uniformly distributed in $\{1, 2, 3\}$
- Consider the $n \times n$ matrix A_0 with entries

$$\mathcal{A}_{0,ij} = egin{cases} 2/n & ext{if } \sigma_i = \sigma_j \ -1/n & ext{otherwise.} \end{cases}$$

 A₀ is an orthogonal projector onto a two-dimensional subspace ⇒ A₀ is rank 2

A closely related model ...

- Let $\boldsymbol{\sigma} = (\sigma_1, \dots, \sigma_n)$ be vector of vertex labels
- Labels σ_i uniformly distributed in $\{1, 2, 3\}$
- Consider the $n \times n$ matrix A_0 with entries

$${\cal A}_{0,ij} = egin{cases} 2/n & {
m if} \ \sigma_i = \sigma_j \ -1/n & {
m otherwise}. \end{cases}$$

 A₀ is an orthogonal projector onto a two-dimensional subspace ⇒ A₀ is rank 2

Wish to estimate \mathbf{A}_0 from noisy version:

$$\mathbf{A} = \lambda \mathbf{A}_0 + \mathbf{W}$$

- Degenerate eigenvalues: $\lambda_1 = \lambda_2 = \lambda > 1$
- ▶ **W** ~ GOE(*n*)

A similar to rescaled adjacency matrix in block model

 AMP

$$\mathbf{A} = \frac{\lambda}{n} \mathbf{V} \mathbf{V}^{\mathsf{T}} + \mathbf{W}$$

Spectral initialization: $\mathbf{x}^0 = [\sqrt{n}\varphi_1 \ \sqrt{n}\varphi_2]$

Main result

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\psi(\boldsymbol{V}_i,\boldsymbol{x}_i^t) = \mathbb{E}\big\{\psi(\underline{V},\,\boldsymbol{M}_t\underline{V}+\boldsymbol{Q}_t^{1/2}\underline{G})\big\} \quad \text{a.s.}$$

AMP

$$\boldsymbol{A} = \frac{\lambda}{n} \boldsymbol{V} \boldsymbol{V}^{\mathsf{T}} + \boldsymbol{W}$$

Spectral initialization: $\mathbf{x}^0 = [\sqrt{n} \varphi_1 \ \sqrt{n} \varphi_2]$

Main result

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^{n}\psi(\boldsymbol{V}_i,\boldsymbol{x}_i^t) = \mathbb{E}\big\{\psi(\underline{V},\,\boldsymbol{M}_t\underline{V}+\boldsymbol{Q}_t^{1/2}\underline{G})\big\} \quad \text{a.s.}$$

State evolution: $\boldsymbol{M}_0 = (\boldsymbol{x}^0)^{\mathsf{T}} \boldsymbol{V}$ and $\boldsymbol{Q}_0 = \lambda^{-1} \boldsymbol{I} \in \mathbb{R}^{2 \times 2}$

$$\boldsymbol{M}_{t+1} = \lambda \mathbb{E} \Big\{ f_t(\boldsymbol{M}_t \underline{V} + \boldsymbol{Q}_t^{1/2} \underline{G}) \underline{V}^{\mathsf{T}} \Big\}, \\ \boldsymbol{Q}_{t+1} = \mathbb{E} \Big\{ f_t(\boldsymbol{M}_t \underline{V} + \boldsymbol{Q}_t^{1/2} \boldsymbol{G}) f_t(\boldsymbol{M}_t \underline{V} + \boldsymbol{Q}_t^{1/2} \underline{G})^{\mathsf{T}} \Big\}.$$

Since $\boldsymbol{V}\boldsymbol{V}^{\mathsf{T}} = \boldsymbol{V}\boldsymbol{R}\boldsymbol{R}^{\mathsf{T}}\boldsymbol{V}^{\mathsf{T}}$ for any 2 × 2 rotation matrix \boldsymbol{R} \Rightarrow state evolution starts from a *random* initial condition

$$oldsymbol{M}_0 = (oldsymbol{x}^0)^{\mathsf{T}}oldsymbol{V} \stackrel{d}{=} \sqrt{1 - \lambda^{-2}}oldsymbol{R}$$
 (B) (E) (E) (E) (31/33)

$$\boldsymbol{A} = rac{\lambda}{n} \boldsymbol{V} \boldsymbol{V}^{\mathsf{T}} + \boldsymbol{W}$$

Gaussian block model with $\lambda = 1.5$, n = 6000

32 / 33

Summary

$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{\mathsf{T}} + \mathbf{W}$

AMP with spectral initialization

- Distributional property of the iterates gives succinct performance characterization via state evolution
- Can be used to construct confidence intervals
- AMP can achieve Bayes-optimal accuracy

Extensions and Future work

- Can be extended to rectangular low-rank matrix model:
 A = UΣV^T + W
- AMP with spectral initialization for generalized linear models, e.g., phase retrieval

https://arxiv.org/abs/1711.01682