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Focus of tutorial

Approximate Message Passing (AMP) for

1. Estimation in linear and generalized linear models

2. Low-rank matrix estimation
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Generalized Linear Models (GLMs)

=A
X A z X (Z’E) yzq(Z, E)
GOAL:
> Estimate signal x € RY from observations y = (y1,...,yn)

» Known sensing matrix A € R"*? and output function g
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Example: Linear model

X A z = Ax

Linear model: y = Ax + ¢

» Widely used model in signal processing and communications:
CDMA, MIMO, sparse regression codes . . .

» Compressed sensing: Signal x assumed to be sparse
i _ hora
a e
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Example: Phase retrieval

1111
T

Interferometry

X-ray crystallography Microscopy
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Example: 1-bit compressed sensing

1-bit compressed sensing [Boufounos '08]: y = sign(Ax + ¢)
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Example: 1-bit compressed sensing

1-bit compressed sensing [Boufounos '08]: y = sign(Ax + ¢)

Many other popular GLMs, e.g.,

» Logistic, probit regression (Binary classification)

» Poisson regression (count data)
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Low-rank models

k xd

n xd n Xk

Topic Modelling
» Each row of A is a document
» Each row of VT is a topic
» Each document convex combination of k topics
[Blei, Ng, Jordan '03]
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Low-rank models

n xd n Xk

Collaborative filtering
» A contains ratings of users for items (e.g, films or books)
P> Rows represent users, columns represent items

» Each rating is a combination of weights corresponding to a
small number of factors
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Hidden clique

Image from Statistical Estimation: From Denoising to Sparse Regression
and Hidden Cliques by A. Montanari

[Alon, Krivelivich, Sudakov 98], [Deshpande, Montanari-'15] .- .
8/33



Hidden clique

1.0

0.8

0.6

0.4

0.2

Image from Statistical Estimation: From Denoising to Sparse Regression
and Hidden Cliques by A. Montanari

[Alon, Krivelivich, Sudakov 98], [Deshpande, Montanari-'15] .- .
8/33



Hidden clique

1.0

0.8
L

0.6
|

0.4

0.2
1

0.0
1

Image from Statistical Estimation: From Denoising to Sparse Regression
and Hidden Cliques by A. Montanari

[Alon, Krivelivich, Sudakov 98], [Deshpande, Montanari-'15] .- .
8/33



Hidden clique

=t ahd—— &L i | - :
0.0 0.2 0.4 0.6 0.8 1.0

For hidden clique S, adjacency matrix has the form

A=1511 + W

[Alon, Krivelivich, Sudakov 98], [Deshpande, Montanari-'15] .- .
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Structure of Tutorial

1. Introduction to AMP, application to low-rank matrix
estimation

2. AMP to derive exact asymptotics in generalized linear models
(Cynthia Rush)

3. AMP as a flexible tool in high-dimensional statistics (Marco
Mondelli)
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Origins of AMP

» Relaxation of belief propagation for CDMA multiuser
detection:
[Kabashima '03], [Caire, Muller, Tanaka '04], [Tanaka, Okada '05]

» Via systematic approximation of BP iterations:

1. Compressed sensing (linear models): [Donoho, Maleki,
Montanari '09], [Krzakala et. al '11]

2. Generalized linear models: [Rangan '11]

3. Low-rank matrix estimation: [Parker, Schniter, Cevher '14],
[Fletcher, Rangan '18], [Lesieur et al., '17]
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Origins of AMP

» Relaxation of belief propagation for CDMA multiuser
detection:
[Kabashima '03], [Caire, Muller, Tanaka '04], [Tanaka, Okada '05]

» Via systematic approximation of BP iterations:

1. Compressed sensing (linear models): [Donoho, Maleki,
Montanari '09], [Krzakala et. al '11]

2. Generalized linear models: [Rangan '11]

3. Low-rank matrix estimation: [Parker, Schniter, Cevher '14],
[Fletcher, Rangan '18], [Lesieur et al., '17]

We'll take a different approach to understanding AMP:

Study it as an iteration defined via a random matrix
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Gaussian Orthogonal Ensemble (GOE)

Consider a symmetric Gaussian matrix W € R™"
Wij; independent for 1 </ <j<n
1 2
W,-J-NN<O,> for i #J, W,-J-NN<O,> for i =j.
n n

We write W ~ GOE(n)
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Gaussian Orthogonal Ensemble (GOE)

Consider a symmetric Gaussian matrix W € R™"
Wij; independent for 1 </ <j<n
1 2
W,-J-NN<O,> for i #J, W,-J-NN<0,> for i =j.
n n
We write W ~ GOE(n)

Property
If W ~ GOE(n) and Q is any n x n orthogonal matrix, then:

Q" WQ ~ GOE(n)
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An iteration with a GOE matrix

Let W be a GOE matrix

Starting with an initialization h° € R”, define for t > 0:

m' = f;(h"), h = Wmt — b,mt!
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An iteration with a GOE matrix

Let W be a GOE matrix

Starting with an initialization h° € R”, define for t > 0:
m' = f;(h"), h = wWmt — bymt1

» Function f; is Lipschitz and acts component-wise, for t > 1
> Coefficient by = 1 37 | £,'(ht)
> First step: h' = W fy(h°)

We call this the abstract AMP recursion
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State Evolution

m' = f;(h"), h = Wm' — b,m'!

Key result (informal): If initialization h° is independent of W,

then for t > 1, as n — oo, the empirical distribution of h®
converges to N(0,72), where

e = E{(f(G))*}, G~ N(0,77)

» The 74 — 7441 recursion is called state evolution
[[fo(h°)[[2

n

> Initialized with 77 = lim_,oo
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State Evolution

m' = f;(h"), h = Wm' — b,m'!

Key result (informal): If initialization h° is independent of W,

then for t > 1, as n — oo, the empirical distribution of h®
converges to N(0,72), where

e = E{(f(G))*}, G~ N(0,77)

» The 74 — 7441 recursion is called state evolution
[[fo(h°)[[2

n

> Initialized with 77 = lim_,oo

Why is this true? Why is it interesting?
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Heuristic for state evolution
First step: h' = Wm°
> Let v,(h') denote empirical distribution of h*
0

» Since m” is independent of W, we have h' Gaussian with
va(h') — N(0,72) where

0(|2 0y12
2 IR ()]

n—o00 n n—o00 n
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Heuristic for state evolution
First step: h' = Wm°
> Let v,(h') denote empirical distribution of h*
0

» Since m” is independent of W, we have h' Gaussian with
va(h') — N(0,72) where

Im°]2 _

0y(12
7 = lim jim 1UTI

n—o00 n n—o00 n

Second step: h* = Wm' — by m®, with m* = f;(h')

» W and m' are dependent, so Wm" is not Gaussian
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Heuristic for state evolution
First step: h' = Wm°
> Let v,(h') denote empirical distribution of h*
0

» Since m” is independent of W, we have h' Gaussian with
va(h') — N(0,72) where

0y12
2 IO 6]

n—o00 n n—o00 n

0H2 _

Second step: h* = W m' — by m°, with m* = f;(h')

» W and m' are dependent, so Wm" is not Gaussian

» For W ~ GOE(n) independent of m', we have Wm!
Gaussian with v,(Wm?') — N(0,72), where
2

12 1412
2 ImE L IAGRY)

n—o0 n n—o00 n

— E{A(G1)*}, G~ N(0,7)
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Debiasing term

1
h?>=Wm' — by m°, bl:EE fl(h:l)
i=1

» The ‘Onsager’ correction —by;mP is as a debiasing term

» Ensures that h? asymptotically has the same empirical
distribution as Wm'. That is, v,(h?) — N(0, 73)

1,
W't =Wm' — bym'?, by = ;th (h)
i=1
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Debiasing term

1
h?>=Wm' — by m°, b1=EE fl(h:l)
i=1

» The ‘Onsager’ correction —by;mP is as a debiasing term

» Ensures that h? asymptotically has the same empirical
distribution as Wm'. That is, v,(h?) — N(0, 73)

1,
W't =Wm' — bym'?, by = ;th (h)
i=1

» Conditional distribution of W m? given (m°, ... m?®) can be

decomposed into Gaussian component and a non-Gaussian one

» Non-Gaussian part asymptotically cancelled out by —b,mt~1
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Pseudo-Lipschitz test functions

A function ¢ : R™ — R is called pseudo-Lipschitz if for all inputs
x,y € R™,

[6(x) = ¢(y)| < Cllx — y[|(1 + [Ix]| + [ly[D

for some constant C > 0
» Roughly: Functions with at most quadratic growth
> Examples: ¢(x) = x2, ¢(x,y) = xy

State evolution results for AMP often stated in terms of
pseudo-Lipschitz test functions

E.g., mean-squared error (MSE) of estimate ¢(x,y) = (x — y)?
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Main result for abstract AMP

m' = f;(h"), h*l = Wmt — bymt!

Assumptions:
» Functions f; Lipschitz, for t > 1
> Initialization h° is independent of W

Theorem [Bolthausen '10, Bayati-Montanari '11]

For t > 1, and any pseudo-Lipschitz function ¢ : R — R,

nILn;O;Z¢ = E{¢(G¢)} almost surely

where G; ~ N(0,77), with 72, ; = E{£(G;)*}.
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Main result for abstract AMP

m' = f,(h"), h = Wmt — b,m'!

Assumptions:
» Functions f; Lipschitz, for t > 1
> Initialization h° is independent of W

Theorem [Bolthausen '10, Bayati-Montanari '11]
For t > 1, and any pseudo-Lipschitz function ¢ : R — R,

nIer;O’::;(ﬁ(hf) = E{¢(G¢)} almost surely

where G; ~ N(0,77), with 72, ; = E{£(G;)*}.

Equivalent to: empirical distribution v,(h") converges to N(0, 72)
almost surely (in Wasserstein-2 distance)
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Stronger statement

mt = ft(ht), ht+1 W mt — b mt—l

Theorem [Javanmard-Montanari '13]

For t > 1, and any pseudo-Lipschitz function ¢ : Rt — R,

lim 72(? hl,h?,._,,hf) = E{¢(G1, Gy, ..., Gt)} almost surely

n—oco N

where (Gi, ..., G¢) ~ N(0,X;), where £; € R*™** can be
recursively computed via state evolution, for t > 1.

Empirical distribution of rows of v,(h*, ..., h') converges (in
Wasserstein-2 distance) to N(0, X;) almost surely

Unifying tutorial on approximate message passing, [Feng-et al.-'22]
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Rank-1 matrix estimation
A= %v v’ + W

» Signal v € R", entries v; ~jq Py
» Noise matrix W ~ GOE(n)

[Baik, Ben Arous, Péché '05], [Baik, Silverstein '06], [Capitaine,

Donati-Martin, Féral '09], [Benaych-Georges and Nadakuditi-*11], ..
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Rank-1 matrix estimation

A
A="vv' + W
n
» Signal v € R", entries v; ~jig Py

» Noise matrix W ~ GOE(n)
Natural estimator: { the principal eigenvector of A
Random matrix theory shows phase transition:

A+ ifA>1
Principal eigenvalue A;(A) _>{ + y WAL

2, if A € (0,1]
2 T-A2 ifA>1
Correlation M — ’ I >
[@lllv 0, if A€ (0,1]

[Baik, Ben Arous, Péché '05], [Baik, Silverstein '06], [Capitaine,

Donati-Martin, Féral '09], [Benaych-Georges and Nadakuditi-*11], ..
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Structural information

A:%VVT+ w

Spectral estimator ¢ doesn't use structural information about v

P> For example, v may be sparse, bounded, non-negative etc.

» Relevant in sparse PCA, non-negative PCA, hidden clique,
community detection under stochastic block model, ...

[Deshpande, Montanari '14], [Barbier et al. '16], [Lesieur et al. '17],
[Miolane, Lelarge '16] ...
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Structural information

A:%VVT+ w

Spectral estimator ¢ doesn't use structural information about v

P> For example, v may be sparse, bounded, non-negative etc.

» Relevant in sparse PCA, non-negative PCA, hidden clique,
community detection under stochastic block model, ...

If we know prior Py on entries of v, MMSE estimator is
/I\ZBayes =E |:VVT | A]

Mgayes is generally not computable, but computable formula for
asymptotic Bayes risk available

[Deshpande, Montanari '14], [Barbier et al. '16], [Lesieur et al. '17],
[Miolane, Lelarge '16] ...
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AMP for rank-1 estimation
AT
A:;vv + W, W ~ GOE(n)

Let's try same AMP iteration as before, but defined via A

" . o 1,
v =f(v),  vTT=AP b 0T b= nz; fe (vf)
1=
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AMP for rank-1 estimation
AT
A:;vv + W, W ~ GOE(n)

Let's try same AMP iteration as before, but defined via A

" . o 1,
v =f(v),  vTT=AP b 0T b= nz; fe (vf)
=

Using the expression for A:

v, V)

t+1 — )\<

v v+ Wit —b, 0!

Shift + abstract AMP iterate
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First iteration
Suppose

v =pov + g%, with gg ~ N(0,531,)
for some constants g, 0g. Then

(v, V%)

n

vi=2) v+ Wil V0 = f(vo)
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First iteration
Suppose

v =pov + g%, with gg ~ N(0,531,)
for some constants g, 0g. Then

(v, V%)

n

vi=2) v+ Wil V0 = f(vo)

» Signal term:

~0 n
METD A5 () = BBV + G)) = m

i=1

n

where V ~ P\ and Gy ~ N(0,03) are independent
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First iteration
Suppose

v =pov + g%, with gg ~ N(0,531,)
for some constants g, 0g. Then

(v, V%)

n

vi=2) v+ Wil V0 = f(vo)

» Signal term:

~0 n
METD A5 () = BBV + G)) = m

i=1

n

where V ~ P\ and Gy ~ N(0,03) are independent
» Empirical distribution of Wfy(v®) — N(0,0%) where

02
0% = lim vl
n—o00 n

= E{fo(uoV + Go)?}

= Empirical dist. v,(vl) — p1V + Gi, with Gy ~ N(0, 0%)
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Subsequent iterations
Recall the AMP iteration:

vi=f(v), v =AU - b0 b= F (V)
ni=
Suppose vn(vt) = utV + Gi, with Gy ~ N(0,0%)
ot
vitt :)\<V’ v) v + Wit —bot!
n
N per1v ~N(o, ”t+1’ )

State evolution recursion

pier1 = AE[V f(ueV + Ge)l, 07y =E[fe(ueV + Gt)]

where G; ~ N(0,02) indep. of V ~ Py. Initialize with 19, oo

= =T — = =
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Main result for rank-one AMP

A:%VVT+W, W ~ GOE(n)

Assumptions:

» Functions f; Lipschitz, for t > 1

0

» Initialization v” is independent of W

Theorem
For t > 1, and any pseudo-Lipschitz function ¢ : R — R,

NN
nlrgonzl¢(v;, vi) = E{¢(V, ueV + G;)} almost surely
=

where G; ~ N(0, 02) independent of V ~ Py,
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Main result for rank-one AMP

A:%VVT+W, W ~ GOE(n)

Assumptions:
» Functions f; Lipschitz, for t > 1

» Initialization v° is independent of W

Theorem
For t > 1, and any pseudo-Lipschitz function ¢ : R — R,

NN
nlrgonzl¢(v;, vi) = E{¢(V, ueV + G;)} almost surely
=

where G; ~ N(0, 02) independent of V ~ Py,

v

[ Implies limp, o0 w = E{V fi(u:V + Gt)}, foreach t > 1 ]
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Choosing f;

AMP result says v! g peV + Gy, with Gy ~ N(0,02)

per1 = AE[V fe(ueV + G)], o071 = E[fi(peV + G)?]

» Given g, 0, want to choose f; to maximize

2
M
Tt+1 = 5
g
t+1
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Choosing f;

AMP result says vt & 1V + Gy, with G, ~ N(0,02)

per1 = AE[V f(ueV + G|, 0741 = E[fe(peV + G)?]

» Given g, 0, want to choose f; to maximize

2
M
Tt+1 = 5
g
t+1

» If we know the prior distribution V ~ Py, optimal choice is
f*(s) = E{V | ptV 4+ 0+Gs = s}
» State evolution with Bayes-optimal f,*
Yer1 = A*{1— mmse(y:) }
where mmse(y) = E{(V — E{V | V 4+ /4G =s})?}
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Fixed point of state evolution

A 2uyT + W, Py~ Unif{l,-1}, A=+2
n

2.00
1.75 1
1.50
1.254
—
+1.00 -
>
0.75 .
0.50 - e

0.25 1 e

0.00 T T T r r
0.00 0.25 0.50 0.75 1.00 1.25
Yt

Recall v0 < woV + 00G

150 1.75 2.00

2
» ~; =0 is an (unstable) fixed point: if vo = % = 0 then

~v¢ = 0 for all ¢!
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Fixed point of state evolution

A 2uyT + W, Py~ Unif{l,-1}, A=+2
n

2.00

1.751
1501 /
1.251
-
+1.001
>

0.75 1

0.50 1
0.25 1

0.00 T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Yt

Recall v0 < woV + o00G
> If 79 # 0, that is, v0 correlated with v, AMP converges to the
‘good’ fixed point
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Correlated initialization
Assuming correlated initialization often not realistic

2.00
1.75 A el
1.50 e
1.251 &

— 24

+1.00 -

< -
0.75 A
0.50 -~

0.25 prad

0.00 T T T T T T y
0.00 0.25 050 0.75 1.00 1.25 1.50 1.75 2.00

Yt

Natural initializer: @ the principal eigenvector of A = AyvT + W

. (P, v)] V1I—=A"2 ifA>1,
Correlation : _— i
@[ lIvl 0, if A€ (0,1]
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Spectral initialization
A= év vi + W

2.00

1.754
1.50 /
1.25
-
+1.004
>

0.75

0.50 -
0.25

0.00 £, . . . . . .
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Yt

» Standard AMP theory assumes #° is independent of A

» Spectral initialization requires special analysis
[Montanari-Venkataramanan '21]

» With spectral initialization g =1 — A2 if A > 1
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Example: Two-point mixture

A:%VVT+W

1—¢ €
Py =¢cda, +(1—¢)ba_ a, = . a_ = — 1

Run AMP with spectral initialization
Ve = A*{1 — mmse(y¢) }

» Can determine fixed point lims_ o V¢

> Initialization 79 = 1 — A2
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Example: Two-point mixture

A
A="w + W
n

1—¢ €
PV:€53++(1_8)637 ay = - a_ = — 1_5_

Squared-correlation vs A

1.0~

0.8

0.6F

0.4

0.0
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Example: Two-point mixture

A
A="w + W
n

1—¢ €
PV:€53++(1_8)637 ay = - a_ = — 1_5_

Squared-correlation vs A

1.0

0.8

0.6

0.2
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Rank-k matrix estimation

Can generalize AMP to estimate rank-k signals

Symmetric:

k
A= Z)\,’V;V}r + W € R™"
i=1

GOAL: To estimate the vectors vi,..., v, from A

Non-symmetric:

k
A= Z)\,’U,’V}r + W e RmMx”n
i=1

GOAL: Estimate the singular vectors uq,...,u, and vq,...

» Vi
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Generalizations
Abstract AMP can be generalized to:
1. Matrix-valued iterates

mt — ff_-(ht), hf.‘-‘rl — Wmt . bt mtfl

with h®, m® being n x k matrices (k is fixed)

Used for analyzing AMP for rank-k matrix estimation
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Generalizations
Abstract AMP can be generalized to:

1. Matrix-valued iterates
m' = f,(h"), ht = wWm! — b, mt!
with h®, m® being n x k matrices (k is fixed)

Used for analyzing AMP for rank-k matrix estimation

2. Non-symmetric i.i.d. Gaussian matrix A € R"¥9.
AMP defined via pairs of functions f;, g; for t > 1:

et = Af,(h') — by g;_1(ef 1)
ht+1 — ATgt(et) — ¢ ft(ht)

» Empirical distributions of et € R” and h'** € R converge to
zero-mean Gaussians with variances given by SE

» Used for analyzing AMP for linear models
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Finite sample analysis of AMP

State evolution (SE) results in the large-but-finite n regime can be
established under stronger assumptions

» [Rush, Venkataramanan '18]: Concentration inequality for
AMP performance showing validity of SE for ~ log’ign
iterations

» [Li, Wei '22], [Li, Fan, Wei '23]: Refined finite-sample SE for

rank-1 AMP showing SE valid for O(Wog(n)) iterations
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Reference:

O. Feng, R. Venkataramanan, C. Rush, R. Samworth,
A unifying tutorial on Approximate Message Passing,
Foundations and Trends in Machine Learning, 2022
https://arxiv.org/abs/2105.02180

Free download during ISIT at
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Access code: ISIT-9502
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