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Focus of tutorial

Approximate Message Passing (AMP) for

1. Estimation in linear and generalized linear models

2. Low-rank matrix estimation
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Generalized Linear Models (GLMs)

x A q(z , ε)z = Ax y = q(z , ε)

ε

GOAL:

▶ Estimate signal x ∈ Rd from observations y ≡ (y1, . . . , yn)

▶ Known sensing matrix A ∈ Rn×d and output function q
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Example: Linear model

x A q(z , ε)z = Ax y = q(z , ε)

ε

Linear model: y = Ax + ε

▶ Widely used model in signal processing and communications:
CDMA, MIMO, sparse regression codes . . .

▶ Compressed sensing: Signal x assumed to be sparse
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Example: Phase retrieval

x A q(z , ε)z = Ax y = q(z , ε)

ε

Phase retrieval: y = |Ax |2 + ε

X-ray crystallography Microscopy
Interferometry

5 / 33



Example: 1-bit compressed sensing

x A q(z , ε)z = Ax y = q(z , ε)

ε

1-bit compressed sensing [Boufounos ’08]: y = sign(Ax + ε)

Many other popular GLMs, e.g.,

▶ Logistic, probit regression (Binary classification)

▶ Poisson regression (count data)
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Low-rank models

≈A U

VT

n× d n× k

k × d

Topic Modelling

▶ Each row of A is a document

▶ Each row of V T is a topic

▶ Each document convex combination of k topics

[Blei, Ng, Jordan ’03]
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Low-rank models

≈A U

VT

n× d n× k

k × d

Collaborative filtering

▶ A contains ratings of users for items (e.g, films or books)

▶ Rows represent users, columns represent items

▶ Each rating is a combination of weights corresponding to a
small number of factors
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Hidden clique

44 E. W. TRAMEL, S. KUMAR, A. GIURGIU, AND A. MONTANARI
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(a) A random graph with a planted
clique.
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(b) The same graph, but with the ver-
tices shu✏ed.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Retrieving the clique in the shuf-
fled graph

On the other hand, if i 2 S, then Di ⇠ k�1+Binom(n�k, 1/2). Hence, by a similar
union bound

min
i2S

Di �
n + k

2
�
r

(1 + "0)
n log k

2
. (143)

The claim follows by using together the above, and selecting a suitable value "0. ⇤
For k too small, the problem becomes statistically intractable because the planted

clique is not the unique clique of size k. Hence no estimator can distinguish between
the set S and another set S 0 that supports a di↵erent (purely random) clique. The
next theorem characterizes this statistical threshold.

Proposition 2. Let " > 0 be fixed. Then, for k < 2(1 � ") log2 n any estimator bS is

such that bS 6= S with probability converging to one as n ! 1.

Viceversa, for k < 2(1� ") log2 n there exists an estimator bS such that bS = S with
probability converging to one as n ! 1.

Proof. We will not present a complete proof but only sketch the fundamental reason
for a threshold k ⇡ 2 log2 n and leave to the reader the task of filling the details.

Image from Statistical Estimation: From Denoising to Sparse Regression
and Hidden Cliques by A. Montanari

[Alon, Krivelivich, Sudakov ’98], [Deshpande, Montanari ’15] . . .
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probability converging to one as n ! 1.

Proof. We will not present a complete proof but only sketch the fundamental reason
for a threshold k ⇡ 2 log2 n and leave to the reader the task of filling the details.

For hidden clique S , adjacency matrix has the form

A = 1S1
T
S + W

[Alon, Krivelivich, Sudakov ’98], [Deshpande, Montanari ’15] . . .
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Structure of Tutorial

1. Introduction to AMP, application to low-rank matrix
estimation

2. AMP to derive exact asymptotics in generalized linear models
(Cynthia Rush)

3. AMP as a flexible tool in high-dimensional statistics (Marco
Mondelli)
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Origins of AMP

▶ Relaxation of belief propagation for CDMA multiuser
detection:
[Kabashima ’03], [Caire, Muller, Tanaka ’04], [Tanaka, Okada ’05]

▶ Via systematic approximation of BP iterations:

1. Compressed sensing (linear models): [Donoho, Maleki,
Montanari ’09], [Krzakala et. al ’11]

2. Generalized linear models: [Rangan ’11]

3. Low-rank matrix estimation: [Parker, Schniter, Cevher ’14],
[Fletcher, Rangan ’18], [Lesieur et al., ’17]

We’ll take a different approach to understanding AMP:

Study it as an iteration defined via a random matrix
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Gaussian Orthogonal Ensemble (GOE)

Consider a symmetric Gaussian matrix W ∈ Rn×n

Wij independent for 1 ≤ i ≤ j ≤ n

Wij ∼ N

(
0,

1

n

)
for i ̸= j , Wij ∼ N

(
0,

2

n

)
for i = j .

We write W ∼ GOE(n)

Property

If W ∼ GOE(n) and Q is any n × n orthogonal matrix, then:

QTWQ ∼ GOE(n)
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An iteration with a GOE matrix

Let W be a GOE matrix

Starting with an initialization h0 ∈ Rn, define for t ≥ 0:

mt = ft(ht), ht+1 = W mt − bt mt−1

▶ Function ft is Lipschitz and acts component-wise, for t ≥ 1

▶ Coefficient bt =
1
n

∑n
i=1 f

′
t (h

t
i )

▶ First step: h1 = W f0(h0)

We call this the abstract AMP recursion
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State Evolution

mt = ft(ht), ht+1 = W mt − bt mt−1

Key result (informal): If initialization h0 is independent of W ,
then for t ≥ 1, as n → ∞, the empirical distribution of ht

converges to N(0, τ2t ), where

τ2t+1 = E{(ft(Gt))
2}, Gt ∼ N(0, τ2t )

▶ The τt → τt+1 recursion is called state evolution

▶ Initialized with τ21 = limn→∞
∥f0(h0)∥2

n

Why is this true? Why is it interesting?
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Heuristic for state evolution

First step: h1 = Wm0

▶ Let νn(h1) denote empirical distribution of h1

▶ Since m0 is independent of W , we have h1 Gaussian with
νn(h1) → N(0, τ21 ) where

τ21 = lim
n→∞

∥m0∥2
n

= lim
n→∞

∥f0(h0)∥2
n

Second step: h2 = W m1 − b1 m0, with m1 = f1(h1)

▶ W and m1 are dependent, so Wm1 is not Gaussian

▶ For W̃ ∼ GOE(n) independent of m1, we have W̃m1

Gaussian with νn(W̃m1) → N(0, τ22 ), where

τ22 = lim
n→∞

∥m1∥2
n

= lim
n→∞

∥f1(h1)∥2
n

= E{f1(G1)
2}, G1 ∼ N(0, τ21 )
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Debiasing term

h2 = W m1 − b1 m0, b1 =
1

n

n∑

i=1

f
′
1 (h

1
i )

▶ The ‘Onsager’ correction −b1m0 is as a debiasing term

▶ Ensures that h2 asymptotically has the same empirical
distribution as W̃m1. That is, νn(h2) → N(0, τ22 )

ht+1 = W mt − bt mt−1, bt =
1

n

n∑

i=1

f
′
t (h

t
i )

▶ Conditional distribution of W mt given (m0, . . . ,mt) can be
decomposed into Gaussian component and a non-Gaussian one

▶ Non-Gaussian part asymptotically cancelled out by −btmt−1
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Pseudo-Lipschitz test functions

A function ϕ : Rm → R is called pseudo-Lipschitz if for all inputs
x , y ∈ Rm,

|ϕ(x)− ϕ(y)| ≤ C∥x − y∥(1 + ∥x∥+ ∥y∥)

for some constant C > 0

▶ Roughly: Functions with at most quadratic growth

▶ Examples: ϕ(x) = x2, ϕ(x , y) = xy

State evolution results for AMP often stated in terms of
pseudo-Lipschitz test functions

E.g., mean-squared error (MSE) of estimate ϕ(x , y) = (x − y)2

16 / 33



Main result for abstract AMP

mt = ft(ht), ht+1 = W mt − bt mt−1

Assumptions:

▶ Functions ft Lipschitz, for t ≥ 1

▶ Initialization h0 is independent of W

Theorem [Bolthausen ’10, Bayati-Montanari ’11]

For t ≥ 1, and any pseudo-Lipschitz function ϕ : R → R,

lim
n→∞

1

n

n∑

i=1

ϕ
(
hti
)
= E{ϕ(Gt)} almost surely

where Gt ∼ N(0, τ2t ), with τ2t+1 = E{ft(Gt)
2}.

Equivalent to: empirical distribution νn(ht) converges to N(0, τ2t )
almost surely (in Wasserstein-2 distance)
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Stronger statement

mt = ft(ht), ht+1 = W mt − bt mt−1

Theorem [Javanmard-Montanari ’13]

For t ≥ 1, and any pseudo-Lipschitz function ϕ : Rt → R,

lim
n→∞

1

n

n∑

i=1

ϕ
(
h1i , h

2
i , . . . , h

t
i

)
= E{ϕ(G1,G2, . . . ,Gt)} almost surely

where (G1, . . . ,Gt) ∼ N(0,Σt), where Σt ∈ Rt×t can be
recursively computed via state evolution, for t ≥ 1.

Empirical distribution of rows of νn(h1, . . . ,ht) converges (in
Wasserstein-2 distance) to N(0,Σt) almost surely

Unifying tutorial on approximate message passing, [Feng et al. ’22]
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Rank-1 matrix estimation

A =
λ

n
v vT + W

▶ Signal v ∈ Rn, entries vi ∼ iid PV

▶ Noise matrix W ∼ GOE(n)

Natural estimator: φ̂ the principal eigenvector of A

Random matrix theory shows phase transition:

Principal eigenvalue λ1(A) →
{
λ+ λ−1, if λ > 1,

2, if λ ∈ (0, 1]

Correlation
|⟨φ̂, v⟩|
∥φ̂∥∥v∥ →

{√
1− λ−2, if λ > 1,

0, if λ ∈ (0, 1]

[Baik, Ben Arous, Péché ’05], [Baik, Silverstein ’06], [Capitaine,
Donati-Martin, Féral ’09], [Benaych-Georges and Nadakuditi ’11], . . .
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Structural information

A =
λ

n
v vT + W

Spectral estimator φ̂ doesn’t use structural information about v
▶ For example, v may be sparse, bounded, non-negative etc.

▶ Relevant in sparse PCA, non-negative PCA, hidden clique,
community detection under stochastic block model, . . .

If we know prior PV on entries of v , MMSE estimator is

M̂Bayes = E
[
vvT | A

]

M̂Bayes is generally not computable, but computable formula for
asymptotic Bayes risk available

[Deshpande, Montanari ’14], [Barbier et al. ’16], [Lesieur et al. ’17],
[Miolane, Lelarge ’16] . . .
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AMP for rank-1 estimation

A =
λ

n
v vT + W , W ∼ GOE(n)

Let’s try same AMP iteration as before, but defined via A

v̂ t = ft(v t), v t+1 = A v̂ t − bt v̂ t−1, bt =
1

n

n∑

i=1

f
′
t (v

t
i )

Using the expression for A:

v t+1 = λ
⟨v , v̂ t⟩

n
v + W v̂ t − bt v̂ t−1

Shift + abstract AMP iterate
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First iteration
Suppose

v0 = µ0 v + g0 , with g0 ∼ N(0, σ2
0I n)

for some constants µ0, σ0. Then

v1 = λ
⟨v , v̂0⟩

n
v + W v̂0, v̂0 = f0(v0)

▶ Signal term:

λ⟨v , v̂0⟩
n

=
λ

n

n∑

i=1

vi f0(v
0
i ) → E{Vf0(µ0V + G0)} =: µ1

where V ∼ PV and G0 ∼ N(0, σ2
0) are independent

▶ Empirical distribution of W f0(v0) → N(0, σ2
1) where

σ2
1 := lim

n→∞
∥v0∥2
n

= E{f0(µ0V + G0)
2}

⇒ Empirical dist. νn(v1) → µ1V + G1, with G1 ∼ N(0, σ2
1)
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Subsequent iterations
Recall the AMP iteration:

v̂ t = ft(v t), v t+1 = A v̂ t − bt v̂ t−1, bt =
1

n

n∑

i=1

f
′
t (v

t
i )

Suppose νn(v t) → µtV + Gt , with Gt ∼ N(0, σ2
t )

v t+1 = λ
⟨v , v̂ t⟩

n
v

︸ ︷︷ ︸
≈µt+1v

+ W v̂ t − bt v̂ t−1

︸ ︷︷ ︸
≈N(0,σ2

t+1I n)

State evolution recursion

µt+1 = λE[V ft(µtV + Gt)], σ2
t+1 = E[ft(µtV + Gt)

2]

where Gt ∼ N(0, σ2
t ) indep. of V ∼ PV . Initialize with µ0, σ0
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Main result for rank-one AMP

A =
λ

n
v vT + W , W ∼ GOE(n)

Assumptions:
▶ Functions ft Lipschitz, for t ≥ 1

▶ Initialization v0 is independent of W

Theorem

For t ≥ 1, and any pseudo-Lipschitz function ϕ : R → R,

lim
n→∞

1

n

n∑

i=1

ϕ
(
vi , v

t
i

)
= E{ϕ(V , µtV + Gt)} almost surely

where Gt ∼ N(0, σ2
t ) independent of V ∼ PV

Implies limn→∞
⟨v , v̂ t⟩

n = E{V ft(µtV +Gt)}, for each t ≥ 1
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Choosing ft

AMP result says v t d≈ µtV + Gt , with Gt ∼ N(0, σ2
t )

µt+1 = λE[V ft(µtV + Gt)], σ2
t+1 = E[ft(µtV + Gt)

2]

▶ Given µt , σt , want to choose ft to maximize

γt+1 :=
µ2
t+1

σ2
t+1

▶ If we know the prior distribution V ∼ PV , optimal choice is

f ∗
t (s) = E{V | µtV + σtGt = s}

▶ State evolution with Bayes-optimal f ∗
t

γt+1 = λ2
{
1−mmse(γt)

}

where mmse(γ) = E{(V − E{V | V +
√
γG = s})2}
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Fixed point of state evolution

A =
λ

n
v vT + W , PV ∼ Unif{1,−1}, λ =

√
2

Recall v0 d
= µ0V + σ0G

▶ γt = 0 is an (unstable) fixed point: if γ0 =
µ2
0

σ2
0
= 0 then

γt = 0 for all t!
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Fixed point of state evolution

A =
λ

n
v vT + W , PV ∼ Unif{1,−1}, λ =

√
2

Recall v0 d
= µ0V + σ0G

▶ If γ0 ̸= 0, that is, v0 correlated with v , AMP converges to the
‘good’ fixed point
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Correlated initialization
Assuming correlated initialization often not realistic

Natural initializer: φ̂ the principal eigenvector of A = λ
nv vT + W

Correlation :
|⟨φ̂, v⟩|
∥φ̂∥∥v∥ →

{√
1− λ−2, if λ > 1,

0, if λ ∈ (0, 1]
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Spectral initialization

A =
λ

n
v vT + W

▶ Standard AMP theory assumes v̂0 is independent of A
▶ Spectral initialization requires special analysis

[Montanari-Venkataramanan ’21]

▶ With spectral initialization γ0 = 1− λ−2 if λ > 1
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Example: Two-point mixture

A =
λ

n
vvT + W

PV = ε δa+ + (1− ε)δa− a+ =

√
1− ε

ε
a− = −

√
ε

1− ε
.

Run AMP with spectral initialization

γt+1 = λ2
{
1−mmse(γt)

}

▶ Can determine fixed point limt→∞ γt

▶ Initialization γ0 = 1− λ−2
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Rank-k matrix estimation

Can generalize AMP to estimate rank-k signals

Symmetric:

A =
k∑

i=1

λiv ivT
i + W ∈ Rn×n

GOAL: To estimate the vectors v1, . . . , vk from A

Non-symmetric:

A =
k∑

i=1

λiu ivT
i + W ∈ Rm×n

GOAL: Estimate the singular vectors u1, . . . ,uk and v1, . . . , vk
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Generalizations
Abstract AMP can be generalized to:

1. Matrix-valued iterates

mt = ft(ht), ht+1 = W mt − bt mt−1

with ht , mt being n × k matrices (k is fixed)

Used for analyzing AMP for rank-k matrix estimation

2. Non-symmetric i.i.d. Gaussian matrix A ∈ Rn×d .
AMP defined via pairs of functions ft , gt for t ≥ 1:

et = A ft(ht) − bt gt−1(et−1)

ht+1 = AT gt(et) − ct ft(ht)

▶ Empirical distributions of et ∈ Rn and ht+1 ∈ Rd converge to
zero-mean Gaussians with variances given by SE

▶ Used for analyzing AMP for linear models
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Finite sample analysis of AMP

State evolution (SE) results in the large-but-finite n regime can be
established under stronger assumptions

▶ [Rush, Venkataramanan ’18]: Concentration inequality for
AMP performance showing validity of SE for ∼ log n

log log n
iterations

▶ [Li, Wei ’22], [Li, Fan, Wei ’23]: Refined finite-sample SE for
rank-1 AMP showing SE valid for O( n

polylog(n)) iterations
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