Approximate Message Passing for High-Dimensional Inference, I

Ramji Venkataramanan
University of Cambridge

ISIT 2023

Focus of tutorial

Approximate Message Passing (AMP) for

1. Estimation in linear and generalized linear models
2. Low-rank matrix estimation

Generalized Linear Models (GLMs)

GOAL:

- Estimate signal $\boldsymbol{x} \in \mathbb{R}^{d}$ from observations $\boldsymbol{y} \equiv\left(y_{1}, \ldots, y_{n}\right)$
- Known sensing matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$ and output function q

Example: Linear model

Linear model: $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{\varepsilon}$

- Widely used model in signal processing and communications: CDMA, MIMO, sparse regression codes ...
- Compressed sensing: Signal \boldsymbol{x} assumed to be sparse

Example: Phase retrieval

Phase retrieval: $\boldsymbol{y}=|\boldsymbol{A x}|^{2}+\varepsilon$

X-ray crystallography

Microscopy

Interferometry

Example: 1-bit compressed sensing

1-bit compressed sensing [Boufounos '08]: $\boldsymbol{y}=\operatorname{sign}(\boldsymbol{A} \boldsymbol{x}+\boldsymbol{\varepsilon})$

Example: 1-bit compressed sensing

1-bit compressed sensing [Boufounos '08]: $\boldsymbol{y}=\operatorname{sign}(\boldsymbol{A x}+\boldsymbol{\varepsilon})$

Many other popular GLMs, e.g.,

- Logistic, probit regression (Binary classification)
- Poisson regression (count data)

Low-rank models

Topic Modelling

- Each row of \boldsymbol{A} is a document
- Each row of \boldsymbol{V}^{\top} is a topic
- Each document convex combination of k topics
[Blei, Ng, Jordan '03]

Low-rank models

Collaborative filtering

- \boldsymbol{A} contains ratings of users for items (e.g, films or books)
- Rows represent users, columns represent items
- Each rating is a combination of weights corresponding to a small number of factors

Hidden clique

Image from Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques by A. Montanari
[Alon, Krivelivich, Sudakov '98], [Deshpande, Montanari 15]

Hidden clique

Image from Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques by A. Montanari
[Alon, Krivelivich, Sudakov '98], [Deshpande, Montanari 15]

Hidden clique

Image from Statistical Estimation: From Denoising to Sparse Regression and Hidden Cliques by A. Montanari

[^0]
Hidden clique

For hidden clique S, adjacency matrix has the form

$$
\boldsymbol{A}=\mathbf{1}_{S} \mathbf{1}_{S}^{\top}+\boldsymbol{W}
$$

[Alon, Krivelivich, Sudakov '98], [Deshpande, Montanari '15]

Structure of Tutorial

1. Introduction to AMP, application to low-rank matrix estimation
2. AMP to derive exact asymptotics in generalized linear models (Cynthia Rush)
3. AMP as a flexible tool in high-dimensional statistics (Marco Mondelli)

Origins of AMP

- Relaxation of belief propagation for CDMA multiuser detection:
[Kabashima '03], [Caire, Muller, Tanaka '04], [Tanaka, Okada '05]
- Via systematic approximation of BP iterations:

1. Compressed sensing (linear models): [Donoho, Maleki, Montanari '09], [Krzakala et. al '11]
2. Generalized linear models: [Rangan '11]
3. Low-rank matrix estimation: [Parker, Schniter, Cevher '14], [Fletcher, Rangan '18], [Lesieur et al., '17]

Origins of AMP

- Relaxation of belief propagation for CDMA multiuser detection:
[Kabashima '03], [Caire, Muller, Tanaka '04], [Tanaka, Okada '05]
- Via systematic approximation of BP iterations:

1. Compressed sensing (linear models): [Donoho, Maleki, Montanari '09], [Krzakala et. al '11]
2. Generalized linear models: [Rangan '11]
3. Low-rank matrix estimation: [Parker, Schniter, Cevher '14], [Fletcher, Rangan '18], [Lesieur et al., '17]

We'll take a different approach to understanding AMP:
Study it as an iteration defined via a random matrix

Gaussian Orthogonal Ensemble (GOE)

Consider a symmetric Gaussian matrix $\boldsymbol{W} \in \mathbb{R}^{n \times n}$

$$
\begin{aligned}
& W_{i j} \text { independent for } 1 \leq i \leq j \leq n \\
& W_{i j} \sim N\left(0, \frac{1}{n}\right) \text { for } i \neq j, \quad W_{i j} \sim N\left(0, \frac{2}{n}\right) \text { for } i=j
\end{aligned}
$$

We write $\boldsymbol{W} \sim \operatorname{GOE}(n)$

Gaussian Orthogonal Ensemble (GOE)

Consider a symmetric Gaussian matrix $\boldsymbol{W} \in \mathbb{R}^{n \times n}$
$W_{i j}$ independent for $1 \leq i \leq j \leq n$

$$
W_{i j} \sim \mathrm{~N}\left(0, \frac{1}{n}\right) \text { for } i \neq j, \quad W_{i j} \sim \mathrm{~N}\left(0, \frac{2}{n}\right) \text { for } i=j
$$

We write $\boldsymbol{W} \sim \operatorname{GOE}(n)$

Property

If $\boldsymbol{W} \sim \operatorname{GOE}(n)$ and \boldsymbol{Q} is any $n \times n$ orthogonal matrix, then:

$$
\boldsymbol{Q}^{\top} \boldsymbol{W} \boldsymbol{Q} \sim \operatorname{GOE}(n)
$$

An iteration with a GOE matrix

Let \boldsymbol{W} be a GOE matrix
Starting with an initialization $\boldsymbol{h}^{0} \in \mathbb{R}^{n}$, define for $t \geq 0$:

$$
\boldsymbol{m}^{t}=f_{t}\left(\boldsymbol{h}^{t}\right), \quad \boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}
$$

An iteration with a GOE matrix

Let \boldsymbol{W} be a GOE matrix
Starting with an initialization $\boldsymbol{h}^{0} \in \mathbb{R}^{n}$, define for $t \geq 0$:

$$
\boldsymbol{m}^{t}=f_{t}\left(\boldsymbol{h}^{t}\right), \quad \boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}
$$

- Function f_{t} is Lipschitz and acts component-wise, for $t \geq 1$
- Coefficient $\mathrm{b}_{t}=\frac{1}{n} \sum_{i=1}^{n} f_{t}^{\prime}\left(h_{i}^{t}\right)$
- First step: $\boldsymbol{h}^{1}=\boldsymbol{W} f_{0}\left(\boldsymbol{h}^{0}\right)$

We call this the abstract AMP recursion

State Evolution

$$
\boldsymbol{m}^{t}=f_{t}\left(\boldsymbol{h}^{t}\right), \quad \boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}
$$

Key result (informal): If initialization \boldsymbol{h}^{0} is independent of \boldsymbol{W}, then for $t \geq 1$, as $n \rightarrow \infty$, the empirical distribution of \boldsymbol{h}^{t} converges to $\mathrm{N}\left(0, \tau_{t}^{2}\right)$, where

$$
\tau_{t+1}^{2}=\mathbb{E}\left\{\left(f_{t}\left(G_{t}\right)\right)^{2}\right\}, \quad G_{t} \sim \mathrm{~N}\left(0, \tau_{t}^{2}\right)
$$

- The $\tau_{t} \rightarrow \tau_{t+1}$ recursion is called state evolution
- Initialized with $\tau_{1}^{2}=\lim _{n \rightarrow \infty} \frac{\left\|f_{0}\left(\boldsymbol{h}^{0}\right)\right\|^{2}}{n}$

State Evolution

$$
\boldsymbol{m}^{t}=f_{t}\left(\boldsymbol{h}^{t}\right), \quad \boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}
$$

Key result (informal): If initialization \boldsymbol{h}^{0} is independent of \boldsymbol{W}, then for $t \geq 1$, as $n \rightarrow \infty$, the empirical distribution of \boldsymbol{h}^{t} converges to $\mathrm{N}\left(0, \tau_{t}^{2}\right)$, where

$$
\tau_{t+1}^{2}=\mathbb{E}\left\{\left(f_{t}\left(G_{t}\right)\right)^{2}\right\}, \quad G_{t} \sim \mathrm{~N}\left(0, \tau_{t}^{2}\right)
$$

- The $\tau_{t} \rightarrow \tau_{t+1}$ recursion is called state evolution
- Initialized with $\tau_{1}^{2}=\lim _{n \rightarrow \infty} \frac{\left\|f_{0}\left(\boldsymbol{h}^{0}\right)\right\|^{2}}{n}$

Why is this true? Why is it interesting?

Heuristic for state evolution

First step: $\boldsymbol{h}^{1}=\boldsymbol{W} \boldsymbol{m}^{0}$

- Let $\nu_{n}\left(\boldsymbol{h}^{1}\right)$ denote empirical distribution of \boldsymbol{h}^{1}
- Since \boldsymbol{m}^{0} is independent of \boldsymbol{W}, we have \boldsymbol{h}^{1} Gaussian with $\nu_{n}\left(\boldsymbol{h}^{1}\right) \rightarrow \mathrm{N}\left(0, \tau_{1}^{2}\right)$ where

$$
\tau_{1}^{2}=\lim _{n \rightarrow \infty} \frac{\left\|\boldsymbol{m}^{0}\right\|^{2}}{n}=\lim _{n \rightarrow \infty} \frac{\left\|f_{0}\left(\boldsymbol{h}^{0}\right)\right\|^{2}}{n}
$$

Heuristic for state evolution

First step: $\boldsymbol{h}^{1}=\boldsymbol{W} \boldsymbol{m}^{0}$

- Let $\nu_{n}\left(\boldsymbol{h}^{1}\right)$ denote empirical distribution of \boldsymbol{h}^{1}
- Since \boldsymbol{m}^{0} is independent of \boldsymbol{W}, we have \boldsymbol{h}^{1} Gaussian with $\nu_{n}\left(\boldsymbol{h}^{1}\right) \rightarrow \mathrm{N}\left(0, \tau_{1}^{2}\right)$ where

$$
\tau_{1}^{2}=\lim _{n \rightarrow \infty} \frac{\left\|\boldsymbol{m}^{0}\right\|^{2}}{n}=\lim _{n \rightarrow \infty} \frac{\left\|f_{0}\left(\boldsymbol{h}^{0}\right)\right\|^{2}}{n}
$$

Second step: $\boldsymbol{h}^{2}=\boldsymbol{W} \boldsymbol{m}^{1}-\mathrm{b}_{1} \boldsymbol{m}^{0}$, with $\boldsymbol{m}^{1}=f_{1}\left(\boldsymbol{h}^{1}\right)$

- \boldsymbol{W} and \boldsymbol{m}^{1} are dependent, so $\boldsymbol{W} \boldsymbol{m}^{1}$ is not Gaussian

Heuristic for state evolution

First step: $\boldsymbol{h}^{1}=\boldsymbol{W} \boldsymbol{m}^{0}$

- Let $\nu_{n}\left(\boldsymbol{h}^{1}\right)$ denote empirical distribution of \boldsymbol{h}^{1}
- Since \boldsymbol{m}^{0} is independent of \boldsymbol{W}, we have \boldsymbol{h}^{1} Gaussian with $\nu_{n}\left(\boldsymbol{h}^{1}\right) \rightarrow \mathrm{N}\left(0, \tau_{1}^{2}\right)$ where

$$
\tau_{1}^{2}=\lim _{n \rightarrow \infty} \frac{\left\|\boldsymbol{m}^{0}\right\|^{2}}{n}=\lim _{n \rightarrow \infty} \frac{\left\|f_{0}\left(\boldsymbol{h}^{0}\right)\right\|^{2}}{n}
$$

Second step: $\boldsymbol{h}^{2}=\boldsymbol{W} \boldsymbol{m}^{1}-\mathrm{b}_{1} \boldsymbol{m}^{0}$, with $\boldsymbol{m}^{1}=f_{1}\left(\boldsymbol{h}^{1}\right)$

- \boldsymbol{W} and \boldsymbol{m}^{1} are dependent, so $\boldsymbol{W} \boldsymbol{m}^{1}$ is not Gaussian
- For $\tilde{\boldsymbol{W}} \sim \operatorname{GOE}(n)$ independent of \boldsymbol{m}^{1}, we have $\tilde{\boldsymbol{W}} \boldsymbol{m}^{1}$ Gaussian with $\nu_{n}\left(\tilde{\boldsymbol{W}} \boldsymbol{m}^{1}\right) \rightarrow \mathrm{N}\left(0, \tau_{2}^{2}\right)$, where

$$
\tau_{2}^{2}=\lim _{n \rightarrow \infty} \frac{\left\|\boldsymbol{m}^{1}\right\|^{2}}{n}=\lim _{n \rightarrow \infty} \frac{\left\|f_{1}\left(\boldsymbol{h}^{1}\right)\right\|^{2}}{n}=\mathbb{E}\left\{f_{1}\left(G_{1}\right)^{2}\right\}, \quad G_{1} \sim \mathrm{~N}\left(0, \tau_{1}^{2}\right)
$$

Debiasing term

$$
\boldsymbol{h}^{2}=\boldsymbol{W} \boldsymbol{m}^{1}-\mathrm{b}_{1} \boldsymbol{m}^{0},
$$

$$
\mathrm{b}_{1}=\frac{1}{n} \sum_{i=1}^{n} f_{1}^{\prime}\left(h_{i}^{1}\right)
$$

- The 'Onsager' correction $-b_{1} \boldsymbol{m}^{0}$ is as a debiasing term
- Ensures that \boldsymbol{h}^{2} asymptotically has the same empirical distribution as $\tilde{\boldsymbol{W}} \boldsymbol{m}^{1}$. That is, $\nu_{n}\left(\boldsymbol{h}^{2}\right) \rightarrow \mathrm{N}\left(0, \tau_{2}^{2}\right)$

$$
\boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}, \quad \mathrm{~b}_{t}=\frac{1}{n} \sum_{i=1}^{n} f_{t}^{\prime}\left(h_{i}^{t}\right)
$$

Debiasing term

$$
\boldsymbol{h}^{2}=\boldsymbol{W} \boldsymbol{m}^{1}-\mathrm{b}_{1} \boldsymbol{m}^{0},
$$

$$
\mathrm{b}_{1}=\frac{1}{n} \sum_{i=1}^{n} f_{1}^{\prime}\left(h_{i}^{1}\right)
$$

- The 'Onsager' correction $-b_{1} \boldsymbol{m}^{0}$ is as a debiasing term
- Ensures that \boldsymbol{h}^{2} asymptotically has the same empirical distribution as $\tilde{\boldsymbol{W}} \boldsymbol{m}^{1}$. That is, $\nu_{n}\left(\boldsymbol{h}^{2}\right) \rightarrow \mathrm{N}\left(0, \tau_{2}^{2}\right)$

$$
\boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}, \quad \mathrm{~b}_{t}=\frac{1}{n} \sum_{i=1}^{n} f_{t}^{\prime}\left(h_{i}^{t}\right)
$$

- Conditional distribution of $\boldsymbol{W} \boldsymbol{m}^{t}$ given $\left(\boldsymbol{m}^{0}, \ldots, \boldsymbol{m}^{t}\right)$ can be decomposed into Gaussian component and a non-Gaussian one
- Non-Gaussian part asymptotically cancelled out by $-\mathrm{b}_{t} \boldsymbol{m}^{t-1}$

Pseudo-Lipschitz test functions

A function $\phi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is called pseudo-Lipschitz if for all inputs $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{m}$,

$$
|\phi(\boldsymbol{x})-\phi(\boldsymbol{y})| \leq C\|\boldsymbol{x}-\boldsymbol{y}\|(1+\|\boldsymbol{x}\|+\|\boldsymbol{y}\|)
$$

for some constant $C>0$

- Roughly: Functions with at most quadratic growth
- Examples: $\phi(x)=x^{2}, \phi(x, y)=x y$

State evolution results for AMP often stated in terms of pseudo-Lipschitz test functions
E.g., mean-squared error (MSE) of estimate $\phi(x, y)=(x-y)^{2}$

Main result for abstract AMP

$$
\boldsymbol{m}^{t}=f_{t}\left(\boldsymbol{h}^{t}\right), \quad \boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}
$$

Assumptions:

- Functions f_{t} Lipschitz, for $t \geq 1$
- Initialization \boldsymbol{h}^{0} is independent of \boldsymbol{W}

Theorem [Bolthausen '10, Bayati-Montanari '11]

For $t \geq 1$, and any pseudo-Lipschitz function $\phi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \phi\left(h_{i}^{t}\right)=\mathbb{E}\left\{\phi\left(G_{t}\right)\right\} \text { almost surely }
$$

where $G_{t} \sim \mathrm{~N}\left(0, \tau_{t}^{2}\right)$, with $\tau_{t+1}^{2}=\mathbb{E}\left\{f_{t}\left(G_{t}\right)^{2}\right\}$.

Main result for abstract AMP

$$
\boldsymbol{m}^{t}=f_{t}\left(\boldsymbol{h}^{t}\right), \quad \boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}
$$

Assumptions:

- Functions f_{t} Lipschitz, for $t \geq 1$
- Initialization \boldsymbol{h}^{0} is independent of \boldsymbol{W}

Theorem [Bolthausen '10, Bayati-Montanari '11]

For $t \geq 1$, and any pseudo-Lipschitz function $\phi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \phi\left(h_{i}^{t}\right)=\mathbb{E}\left\{\phi\left(G_{t}\right)\right\} \text { almost surely }
$$

where $G_{t} \sim \mathrm{~N}\left(0, \tau_{t}^{2}\right)$, with $\tau_{t+1}^{2}=\mathbb{E}\left\{f_{t}\left(G_{t}\right)^{2}\right\}$.
Equivalent to: empirical distribution $\nu_{n}\left(\boldsymbol{h}^{t}\right)$ converges to $\mathrm{N}\left(0, \tau_{t}^{2}\right)$ almost surely (in Wasserstein-2 distance)

Stronger statement

$$
\boldsymbol{m}^{t}=f_{t}\left(\boldsymbol{h}^{t}\right), \quad \boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}
$$

Theorem [Javanmard-Montanari '13]

For $t \geq 1$, and any pseudo-Lipschitz function $\phi: \mathbb{R}^{t} \rightarrow \mathbb{R}$,
$\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \phi\left(h_{i}^{1}, h_{i}^{2}, \ldots, h_{i}^{t}\right)=\mathbb{E}\left\{\phi\left(G_{1}, G_{2}, \ldots, G_{t}\right)\right\}$ almost surely
where $\left(G_{1}, \ldots, G_{t}\right) \sim \mathrm{N}\left(0, \Sigma_{t}\right)$, where $\Sigma_{t} \in \mathbb{R}^{t \times t}$ can be recursively computed via state evolution, for $t \geq 1$.

Empirical distribution of rows of $\nu_{n}\left(\boldsymbol{h}^{1}, \ldots, \boldsymbol{h}^{t}\right)$ converges (in Wasserstein-2 distance) to $\mathrm{N}\left(0, \Sigma_{t}\right)$ almost surely

Rank-1 matrix estimation

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

- Signal $\boldsymbol{v} \in \mathbb{R}^{n}$, entries $v_{i} \sim_{\text {iid }} P_{V}$
- Noise matrix $\boldsymbol{W} \sim \operatorname{GOE}(n)$
[Baik, Ben Arous, Péché '05], [Baik, Silverstein '06], [Capitaine, Donati-Martin, Féral '09], [Benaych-Georges and Nadakuditi 11 1],

Rank-1 matrix estimation

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

- Signal $\boldsymbol{v} \in \mathbb{R}^{n}$, entries $v_{i} \sim_{\text {iid }} P_{V}$
- Noise matrix $\boldsymbol{W} \sim \operatorname{GOE}(n)$

Natural estimator: $\hat{\boldsymbol{\varphi}}$ the principal eigenvector of \boldsymbol{A}
Random matrix theory shows phase transition:
Principal eigenvalue $\lambda_{1}(\boldsymbol{A}) \rightarrow \begin{cases}\lambda+\lambda^{-1}, & \text { if } \lambda>1, \\ 2, & \text { if } \lambda \in(0,1]\end{cases}$
Correlation $\frac{|\langle\hat{\boldsymbol{\varphi}}, \boldsymbol{v}\rangle|}{\|\hat{\boldsymbol{\varphi}}\|\|\boldsymbol{v}\|} \rightarrow \begin{cases}\sqrt{1-\lambda^{-2}}, & \text { if } \lambda>1, \\ 0, & \text { if } \lambda \in(0,1]\end{cases}$
[Baik, Ben Arous, Péché '05], [Baik, Silverstein '06], [Capitaine, Donati-Martin, Féral '09], [Benaych-Georges and Nadakuditi 11],

Structural information

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}
$$

Spectral estimator $\hat{\varphi}$ doesn't use structural information about \boldsymbol{v}

- For example, v may be sparse, bounded, non-negative etc.
- Relevant in sparse PCA, non-negative PCA, hidden clique, community detection under stochastic block model, ...
[Deshpande, Montanari '14], [Barbier et al. '16], [Lesieur et al. '17],
[Miolane, Lelarge '16] ...

Structural information

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

Spectral estimator $\hat{\varphi}$ doesn't use structural information about \boldsymbol{v}

- For example, v may be sparse, bounded, non-negative etc.
- Relevant in sparse PCA, non-negative PCA, hidden clique, community detection under stochastic block model, ...

If we know prior P_{V} on entries of \boldsymbol{v}, MMSE estimator is

$$
\widehat{\boldsymbol{M}}_{\text {Bayes }}=\mathbb{E}\left[\boldsymbol{v} \boldsymbol{v}^{\top} \mid \boldsymbol{A}\right]
$$

$\widehat{\boldsymbol{M}}_{\text {Bayes }}$ is generally not computable, but computable formula for asymptotic Bayes risk available
[Deshpande, Montanari '14], [Barbier et al. '16], [Lesieur et al. '17], [Miolane, Lelarge '16] ...

AMP for rank-1 estimation

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}, \quad \boldsymbol{W} \sim \operatorname{GOE}(n)
$$

Let's try same AMP iteration as before, but defined via \boldsymbol{A}

$$
\hat{\mathbf{v}}^{t}=f_{t}\left(\boldsymbol{v}^{t}\right), \quad \boldsymbol{v}^{t+1}=\boldsymbol{A} \hat{\mathbf{v}}^{t}-\mathrm{b}_{t} \hat{\mathbf{v}}^{t-1}, \quad \mathrm{~b}_{t}=\frac{1}{n} \sum_{i=1}^{n} f_{t}^{\prime}\left(v_{i}^{t}\right)
$$

AMP for rank-1 estimation

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}, \quad \boldsymbol{W} \sim \operatorname{GOE}(n)
$$

Let's try same AMP iteration as before, but defined via \boldsymbol{A}

$$
\hat{\mathbf{v}}^{t}=f_{t}\left(\boldsymbol{v}^{t}\right), \quad \boldsymbol{v}^{t+1}=\boldsymbol{A} \hat{\boldsymbol{v}}^{t}-\mathrm{b}_{t} \hat{\mathbf{v}}^{t-1}, \quad \mathrm{~b}_{t}=\frac{1}{n} \sum_{i=1}^{n} f_{t}^{\prime}\left(v_{i}^{t}\right)
$$

Using the expression for \boldsymbol{A} :

$$
\boldsymbol{v}^{t+1}=\lambda \frac{\left\langle\boldsymbol{v}, \hat{\boldsymbol{v}}^{t}\right\rangle}{n} \boldsymbol{v}+\boldsymbol{W} \hat{\mathbf{v}}^{t}-\mathrm{b}_{t} \hat{\boldsymbol{v}}^{t-1}
$$

Shift + abstract AMP iterate

First iteration

Suppose

$$
\boldsymbol{v}^{0}=\mu_{0} \boldsymbol{v}+\boldsymbol{g}^{0}, \quad \text { with } \boldsymbol{g}_{0} \sim \mathrm{~N}\left(0, \sigma_{0}^{2} \mathbf{I}_{n}\right)
$$

for some constants μ_{0}, σ_{0}. Then

$$
\boldsymbol{v}^{1}=\lambda \frac{\left\langle\boldsymbol{v}, \hat{\boldsymbol{v}}^{0}\right\rangle}{n} \boldsymbol{v}+\boldsymbol{W} \hat{\boldsymbol{v}}^{0}, \quad \hat{\boldsymbol{v}}^{0}=f_{0}\left(\boldsymbol{v}_{0}\right)
$$

First iteration

Suppose

$$
\boldsymbol{v}^{0}=\mu_{0} \boldsymbol{v}+\boldsymbol{g}^{0}, \quad \text { with } \boldsymbol{g}_{0} \sim \mathrm{~N}\left(0, \sigma_{0}^{2} \mathbf{I}_{n}\right)
$$

for some constants μ_{0}, σ_{0}. Then

$$
\boldsymbol{v}^{1}=\lambda \frac{\left\langle\boldsymbol{v}, \hat{\boldsymbol{v}}^{0}\right\rangle}{n} \boldsymbol{v}+\boldsymbol{W} \hat{\mathbf{v}}^{0}, \quad \hat{\boldsymbol{v}}^{0}=f_{0}\left(\boldsymbol{v}_{0}\right)
$$

- Signal term:

$$
\frac{\lambda\left\langle\boldsymbol{v}, \hat{\boldsymbol{v}}^{0}\right\rangle}{n}=\frac{\lambda}{n} \sum_{i=1}^{n} v_{i} f_{0}\left(v_{i}^{0}\right) \rightarrow \mathbb{E}\left\{V f_{0}\left(\mu_{0} V+G_{0}\right)\right\}=: \mu_{1}
$$

where $V \sim P_{V}$ and $G_{0} \sim \mathrm{~N}\left(0, \sigma_{0}^{2}\right)$ are independent

First iteration

Suppose

$$
\boldsymbol{v}^{0}=\mu_{0} \boldsymbol{v}+\boldsymbol{g}^{0}, \quad \text { with } \boldsymbol{g}_{0} \sim \mathrm{~N}\left(0, \sigma_{0}^{2} \mathbf{I}_{n}\right)
$$

for some constants μ_{0}, σ_{0}. Then

$$
\boldsymbol{v}^{1}=\lambda \frac{\left\langle\boldsymbol{v}, \hat{\boldsymbol{v}}^{0}\right\rangle}{n} \boldsymbol{v}+\boldsymbol{W} \hat{\boldsymbol{v}}^{0}, \quad \hat{\boldsymbol{v}}^{0}=f_{0}\left(\boldsymbol{v}_{0}\right)
$$

- Signal term:

$$
\frac{\lambda\left\langle\boldsymbol{v}, \hat{\boldsymbol{v}}^{0}\right\rangle}{n}=\frac{\lambda}{n} \sum_{i=1}^{n} v_{i} f_{0}\left(v_{i}^{0}\right) \rightarrow \mathbb{E}\left\{V f_{0}\left(\mu_{0} V+G_{0}\right)\right\}=: \mu_{1}
$$

where $V \sim P_{V}$ and $G_{0} \sim \mathrm{~N}\left(0, \sigma_{0}^{2}\right)$ are independent

- Empirical distribution of $\boldsymbol{W} f_{0}\left(\boldsymbol{v}^{0}\right) \rightarrow \mathrm{N}\left(0, \sigma_{1}^{2}\right)$ where

$$
\sigma_{1}^{2}:=\lim _{n \rightarrow \infty} \frac{\left\|\boldsymbol{v}^{0}\right\|^{2}}{n}=\mathbb{E}\left\{f_{0}\left(\mu_{0} V+G_{0}\right)^{2}\right\}
$$

\Rightarrow Empirical dist. $\nu_{n}\left(\boldsymbol{v}^{1}\right) \rightarrow \mu_{1} V+G_{1}$, with $G_{1} \approx \mathrm{~N}\left(0, \sigma_{1}^{2}\right)$

Subsequent iterations

Recall the AMP iteration:

$$
\hat{\boldsymbol{v}}^{t}=f_{t}\left(\boldsymbol{v}^{t}\right), \quad \boldsymbol{v}^{t+1}=\boldsymbol{A} \hat{\boldsymbol{v}}^{t}-\mathrm{b}_{t} \hat{\boldsymbol{v}}^{t-1}, \quad \mathrm{~b}_{t}=\frac{1}{n} \sum_{i=1}^{n} f_{t}^{\prime}\left(v_{i}^{t}\right)
$$

Suppose $\nu_{n}\left(\boldsymbol{v}^{t}\right) \rightarrow \mu_{t} V+G_{t}$, with $G_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right)$

$$
\boldsymbol{v}^{t+1}=\underbrace{\lambda \frac{\left\langle\boldsymbol{v}, \hat{\boldsymbol{v}}^{t}\right\rangle}{n} \boldsymbol{v}}_{\approx \mu_{t+1} \boldsymbol{v}}+\underbrace{\boldsymbol{W} \hat{\boldsymbol{v}}^{t}-\mathbf{b}_{t} \hat{\boldsymbol{v}}^{t-1}}_{\approx \mathrm{N}\left(0, \sigma_{t+1}^{2} \boldsymbol{I}_{n}\right)}
$$

State evolution recursion

$$
\mu_{t+1}=\lambda \mathbb{E}\left[V f_{t}\left(\mu_{t} V+G_{t}\right)\right], \quad \sigma_{t+1}^{2}=\mathbb{E}\left[f_{t}\left(\mu_{t} V+G_{t}\right)^{2}\right]
$$

where $G_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right)$ indep. of $V \sim P_{V}$. Initialize with μ_{0}, σ_{0}

Main result for rank-one AMP

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}, \quad \boldsymbol{W} \sim \operatorname{GOE}(n)
$$

Assumptions:

- Functions f_{t} Lipschitz, for $t \geq 1$
- Initialization \boldsymbol{v}^{0} is independent of \boldsymbol{W}

Theorem

For $t \geq 1$, and any pseudo-Lipschitz function $\phi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \phi\left(v_{i}, v_{i}^{t}\right)=\mathbb{E}\left\{\phi\left(V, \mu_{t} V+G_{t}\right)\right\} \text { almost surely }
$$

where $G_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right)$ independent of $V \sim P_{V}$

Main result for rank-one AMP

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}, \quad \boldsymbol{W} \sim \operatorname{GOE}(n)
$$

Assumptions:

- Functions f_{t} Lipschitz, for $t \geq 1$
- Initialization \boldsymbol{v}^{0} is independent of \boldsymbol{W}

Theorem

For $t \geq 1$, and any pseudo-Lipschitz function $\phi: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \phi\left(v_{i}, v_{i}^{t}\right)=\mathbb{E}\left\{\phi\left(V, \mu_{t} V+G_{t}\right)\right\} \text { almost surely }
$$

where $G_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right)$ independent of $V \sim P_{V}$

Implies $\lim _{n \rightarrow \infty} \frac{\left\langle\boldsymbol{v}, \hat{\mathbf{v}}^{t}\right\rangle}{n}=\mathbb{E}\left\{V f_{t}\left(\mu_{t} V+G_{t}\right)\right\}$, for each $t \geq 1$

Choosing f_{t}

AMP result says $\boldsymbol{v}^{t} \stackrel{\mathrm{~d}}{\approx} \mu_{t} V+G_{t}$, with $G_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right)$

$$
\mu_{t+1}=\lambda \mathbb{E}\left[V f_{t}\left(\mu_{t} V+G_{t}\right)\right], \quad \sigma_{t+1}^{2}=\mathbb{E}\left[f_{t}\left(\mu_{t} V+G_{t}\right)^{2}\right]
$$

- Given μ_{t}, σ_{t}, want to choose f_{t} to maximize

$$
\gamma_{t+1}:=\frac{\mu_{t+1}^{2}}{\sigma_{t+1}^{2}}
$$

Choosing f_{t}

AMP result says $\boldsymbol{v}^{t} \stackrel{\text { d }}{\approx} \mu_{t} V+G_{t}$, with $G_{t} \sim \mathrm{~N}\left(0, \sigma_{t}^{2}\right)$

$$
\mu_{t+1}=\lambda \mathbb{E}\left[V f_{t}\left(\mu_{t} V+G_{t}\right)\right], \quad \sigma_{t+1}^{2}=\mathbb{E}\left[f_{t}\left(\mu_{t} V+G_{t}\right)^{2}\right]
$$

- Given μ_{t}, σ_{t}, want to choose f_{t} to maximize

$$
\gamma_{t+1}:=\frac{\mu_{t+1}^{2}}{\sigma_{t+1}^{2}}
$$

- If we know the prior distribution $V \sim P_{V}$, optimal choice is

$$
f_{t}^{*}(s)=\mathbb{E}\left\{V \mid \mu_{t} V+\sigma_{t} G_{t}=s\right\}
$$

- State evolution with Bayes-optimal f_{t}^{*}

$$
\gamma_{t+1}=\lambda^{2}\left\{1-\operatorname{mmse}\left(\gamma_{t}\right)\right\}
$$

where $\operatorname{mmse}(\gamma)=\mathbb{E}\left\{(V-\mathbb{E}\{V \mid V+\sqrt{\gamma} G=s\})^{2}\right\}$

Fixed point of state evolution

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W}, \quad P_{V} \sim \operatorname{Unif}\{1,-1\}, \quad \lambda=\sqrt{2}
$$

Recall $\boldsymbol{v}^{0} \stackrel{\mathrm{~d}}{=} \mu_{0} V+\sigma_{0} G$

- $\gamma_{t}=0$ is an (unstable) fixed point: if $\gamma_{0}=\frac{\mu_{0}^{2}}{\sigma_{0}^{2}}=0$ then $\gamma_{t}=0$ for all $t!$

Fixed point of state evolution

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}, \quad P_{V} \sim \operatorname{Unif}\{1,-1\}, \quad \lambda=\sqrt{2}
$$

Recall $\boldsymbol{v}^{0} \stackrel{\mathrm{~d}}{=} \mu_{0} V+\sigma_{0} G$

- If $\gamma_{0} \neq 0$, that is, \boldsymbol{v}^{0} correlated with \boldsymbol{v}, AMP converges to the 'good' fixed point

Correlated initialization

Assuming correlated initialization often not realistic

Natural initializer: $\hat{\boldsymbol{\varphi}}$ the principal eigenvector of $\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\boldsymbol{\top}}+\boldsymbol{W}$
Correlation : $\quad \frac{|\langle\hat{\varphi}, \boldsymbol{v}\rangle|}{\|\hat{\varphi}\|\|\boldsymbol{v}\|} \rightarrow \begin{cases}\sqrt{1-\lambda^{-2}}, & \text { if } \lambda>1, \\ 0, & \text { if } \lambda \in(0,1]\end{cases}$

Spectral initialization

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

- Standard AMP theory assumes $\hat{\boldsymbol{v}}^{0}$ is independent of \boldsymbol{A}
- Spectral initialization requires special analysis [Montanari-Venkataramanan '21]
- With spectral initialization $\gamma_{0}=1-\lambda^{-2}$ if,$\lambda>1$

Example: Two-point mixture

$$
\begin{gathered}
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{W} \\
P_{V}=\varepsilon \delta_{a_{+}}+(1-\varepsilon) \delta_{a_{-}} \quad a_{+}=\sqrt{\frac{1-\varepsilon}{\varepsilon}} \quad a_{-}=-\sqrt{\frac{\varepsilon}{1-\varepsilon}} .
\end{gathered}
$$

Run AMP with spectral initialization

$$
\gamma_{t+1}=\lambda^{2}\left\{1-\operatorname{mmse}\left(\gamma_{t}\right)\right\}
$$

- Can determine fixed point $\lim _{t \rightarrow \infty} \gamma_{t}$
- Initialization $\gamma_{0}=1-\lambda^{-2}$

Example: Two-point mixture

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

$$
P_{V}=\varepsilon \delta_{a_{+}}+(1-\varepsilon) \delta_{a_{-}} \quad a_{+}=\sqrt{\frac{1-\varepsilon}{\varepsilon}} \quad a_{-}=-\sqrt{\frac{\varepsilon}{1-\varepsilon}} .
$$

Squared-correlation vs λ

Example: Two-point mixture

$$
\boldsymbol{A}=\frac{\lambda}{n} \boldsymbol{v} \boldsymbol{v}^{\top}+\boldsymbol{w}
$$

$$
P_{V}=\varepsilon \delta_{a_{+}}+(1-\varepsilon) \delta_{a_{-}} \quad a_{+}=\sqrt{\frac{1-\varepsilon}{\varepsilon}} \quad a_{-}=-\sqrt{\frac{\varepsilon}{1-\varepsilon}}
$$

Squared-correlation vs λ

Rank-k matrix estimation

Can generalize AMP to estimate rank- k signals
Symmetric:

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \quad \in \mathbb{R}^{n \times n}
$$

GOAL: To estimate the vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$ from \boldsymbol{A}
Non-symmetric:

$$
\boldsymbol{A}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{\top}+\boldsymbol{W} \quad \in \mathbb{R}^{m \times n}
$$

GOAL: Estimate the singular vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ and $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$

Generalizations

Abstract AMP can be generalized to:

1. Matrix-valued iterates

$$
\boldsymbol{m}^{t}=f_{t}\left(\boldsymbol{h}^{t}\right), \quad \boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}
$$

with $\boldsymbol{h}^{t}, \boldsymbol{m}^{t}$ being $n \times k$ matrices (k is fixed)
Used for analyzing AMP for rank-k matrix estimation

Generalizations

Abstract AMP can be generalized to:

1. Matrix-valued iterates

$$
\boldsymbol{m}^{t}=f_{t}\left(\boldsymbol{h}^{t}\right), \quad \boldsymbol{h}^{t+1}=\boldsymbol{W} \boldsymbol{m}^{t}-\mathrm{b}_{t} \boldsymbol{m}^{t-1}
$$

with $\boldsymbol{h}^{t}, \boldsymbol{m}^{t}$ being $n \times k$ matrices (k is fixed)
Used for analyzing AMP for rank-k matrix estimation
2. Non-symmetric i.i.d. Gaussian matrix $\boldsymbol{A} \in \mathbb{R}^{n \times d}$. AMP defined via pairs of functions f_{t}, g_{t} for $t \geq 1$:

$$
\begin{aligned}
\boldsymbol{e}^{t} & =\boldsymbol{A} f_{t}\left(\boldsymbol{h}^{t}\right)-\mathrm{b}_{t} g_{t-1}\left(\boldsymbol{e}^{t-1}\right) \\
\boldsymbol{h}^{t+1} & =\boldsymbol{A}^{\top} g_{t}\left(\boldsymbol{e}^{t}\right)-c_{t} f_{t}\left(\boldsymbol{h}^{t}\right)
\end{aligned}
$$

- Empirical distributions of $\boldsymbol{e}^{t} \in \mathbb{R}^{n}$ and $\boldsymbol{h}^{t+1} \in \mathbb{R}^{d}$ converge to zero-mean Gaussians with variances given by SE
- Used for analyzing AMP for linear models

Finite sample analysis of AMP

State evolution (SE) results in the large-but-finite n regime can be established under stronger assumptions

- [Rush, Venkataramanan '18]: Concentration inequality for AMP performance showing validity of SE for $\sim \frac{\log n}{\log \log n}$ iterations
- [Li, Wei '22], [Li, Fan, Wei '23]: Refined finite-sample SE for rank-1 AMP showing SE valid for $O\left(\frac{n}{\operatorname{polylog}(n)}\right)$ iterations

Reference:
O. Feng, R. Venkataramanan, C. Rush, R. Samworth, A unifying tutorial on Approximate Message Passing, Foundations and Trends in Machine Learning, 2022 https://arxiv.org/abs/2105.02180

Free download during ISIT at https://nowpublishers.com/conference/ISIT2023 Access code: ISIT-9502

[^0]: [Alon, Krivelivich, Sudakov '98], [Deshpande, Montanari 15]

