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Gaussian multiple-access channel

Modern networks often have

I Very large number of users

I Small data payload for each user
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Many-user setting

I Achievable user density µ = L/n

I Fixed user payload logM bits/user

I Energy-per-bit constraint ‖c i‖2 ≤ E := Eb logM, i ∈ [L]

I Per-user probability of error (PUPE) 1
L

∑
i P(x̂ i 6= x i )

Linear scaling regime

L, n→∞ with µ = L/n fixed, Eb and M do not scale with n

What is minimum Eb/N0 required for a given µ and target PUPE,
e.g. 10−3 ?

[Chen, Chen, Guo, ’17], [Ravi, Koch ’19] [Polyanskiy ’17], [Zadik,
Polyanskiy, Thrampoulidis ’19] , [Polyanskiy, Kowshik ’20] 3 / 30
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Previous work

What can be achieved with random Gaussian codebooks and
(infeasible) maximum-likelihood decoding?

This talk

What can be achieved with random linear coding and efficient
Approximate Message Passing (AMP) decoding?
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Bounds

User payload = 8 bits

For each Eb/N0 value, find max. µ that achieves PUPE ≤ 10−3 .

[Zadik, Polyanskiy, Thrampoulidis ’19], [Polyanskiy, Kowshik ’20]
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Random linear coding

. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

ᵀ

B columns

For each user i , codeword c i = Aix i

I Random matrices: Ai ∈ Rn×B

I User i ’s message encoded in x i ∈ RB ∼ PX

y =
∑
i

Aix i + w = Ax + w
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. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

ᵀ

B columns

y =
∑
i

Aix i + w = Ax + w

Examples with IID Gaussian A
I Random codebooks: B = M, and each x i has a single

nonzero value =
√
E

I Random CDMA: B = 1 and x i drawn from M-ary
constellation

...

We will also use spatially coupled A
7 / 30



Spatially coupled matrix

Combined codebook matrix A

n

BL

Gaussian entries on band-diagonal, remaining entries zero
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IID Gaussian matrix

. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

ᵀ

B columns

Ajk ∼iid N (0, 1/n), x i ∼iid PX

Decoding task: Recover x1, . . . , xL from

y =
∑
i

Aix i + w = Ax + w
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Approximate Message Passing

. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

ᵀ

B columns

AMP decoder to recover x = [x1, . . . , xL]

Initialize with x0 = 0, and for t ≥ 0:

Modified residual : z t = y − Ax t + υtz t−1

Effective observation : st = x t + ATz t

[Donoho, Maleki, Montanari ’09], [Bayati, Montanari ’11], [Barbier,
Krzakala ’15], [Rush, V ’15], . . . 10 / 30
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Approximate Message Passing

. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

ᵀ

B columns

AMP decoder to recover x = [x1, . . . , xL]

Initialize with x0 = 0, and for t ≥ 0:

Modified residual : z t = y − Ax t + υtz t−1

Effective observation : st = x t + ATz t

Key distributional property

Empirical distribution of (st − x)
W2−→ N (0, τ t)
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Approximate Message Passing

. . .

User 1 User 2 User L

A : A1 A2 AL
n

x : . . .x1 x2 xL

ᵀ

B columns

AMP decoder to recover x = [x1, . . . , xL]

Initialize with x0 = 0, and for t ≥ 0:

Modified residual : z t = y − Ax t + υtz t−1

Effective observation : st = x t + ATz t

New estimate for user i : x t+1
i = E[ X | X +

√
τ tG = sti ] ∈ RB

X ∼ PX , G ∼ N (0, IB)
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State evolution

Modified residual: z t = y − Ax t + υtz t−1

Effective observation: st = x t + ATz t

New estimate for user i : x t+1
i = E[X | X +

√
τ tG = sti ]

For t ≥ 0, the effective noise variance is

τ t+1 =
N0

2
+ µ ·mmse

( 1

τ t

)
where

mmse(1/τ t) = E
{
‖X −E[X | X+

√
τ tG ]‖2

}
, X ∼ PX , G ∼ N (0, IB)

Initialize with τ0 = N0
2 + µE
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Termination
After a large number of iterations t:

Effective observation : st = x t + ATz t

Estimate for user i : x t+1
i = E[X | X +

√
τ tG = sti ]

Hard-decision estimate:

x̂ t+1
i = arg max

x ′∈X
P
(
X = x ′ | X +

√
τ tG = sti

)
, i ∈ [L]

What happens as t →∞ to

τ t =
N0

2
+ µ ·mmse(1/τ t−1)

This determines the user error rate:

1

L

L∑
i=1

1{x̂ t+1
i 6= x i}
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Converse [ZPT19]
Achievability [ZPT19]
iid + AMP (asymptotic)
iid + AMP at 500 users

User payload = 8 bits

For each µ, we find minimum Eb/N0 that achieves PUPE ≤ 10−3

Theoretical curve is derived from the single-user effective channel
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Single-user channel

Sτ = X +
√
τG , X ∼ PX , G ∼ N (0, IB)

MAP estimator: x̂MAP(Sτ ) = arg maxx ′∈X P (X = x ′ | Sτ )

Prob. of error: Pe(τ) = P( x̂MAP( Sτ ) 6= X )

Example: Random Gaussian codebooks

x̂MAP
j (s) =

{ √
E if sj > sk for all k ∈ [B]\j ,

0 otherwise

Pe(τ) = 1− E
[
Φ(
√
E/τ + G )B−1

]
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Theorem

Consider iid Gaussian A and message vectors x i ∼iid PX . Then,
the asymptotic user error rate of the AMP decoder is

lim
t→∞

lim
L→∞

1

L

L∑
`=1

1
{
x̂ t
` 6= x`

} a.s.
= Pe(τFP)

where the inner limit is taken with L/n = µ.

τFP is the largest stationary point of the potential function:

F(τ) = I (X ; Sτ ) +
1

2µ

[
ln
( τ

N0/2

)
−
(

1− N0/2

τ

)]
where τ ∈

[
N0
2 ,

N0
2 + µE

]
.
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Potential function
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1
µ
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Potential function

10 5 10 4 10 3 10 2 10 1 100

MSE
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M = 2, = 2.0

Eb/N0 = 8.0 dB
Eb/N0 = 10.06 dB
Eb/N0 = 12.0 dB
Eb/N0 = 15.8 dB

Can we achieve Pe(τ∗), corresponding to the global minimum?
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MMSE estimator

Consider y = Ax + w with x ∼iid PX and w ∼iid N (0, N0
2 )

Decoder that minimizes the MSE: x̂mmse = E[x | y ,A]

Limiting MMSE: limL→∞
1
LE
{
‖x − x̂mmse‖2

}

From [Reeves, Pfister ’16], [Barbier et al. ’17] :

1

L
E
{
‖x − x̂mmse‖2

}
→

(
τ∗ − N0

2

)
1

µ

where τ∗ is the global minimum of the potential function

F(τ) = I (X ; Sτ ) +
1

2µ

[
ln
( τ

N0/2

)
−
(

1− N0/2

τ

)]
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Spatially coupled Gaussian matrix

Combined matrix A

n/R

n

LB/C

LB

Base matrix W

R = C + ! � 1

C

!

Ajk ∼ N (0,Wrc) for j ∈ block r, k ∈ block c

x = [x1, x2, . . . , xL] has same form as before: x i ∈ RB ∼iid PX

[Donoho, Javanmard, Montanari ’13] [Barbier and Krzakala ’17] [Liang,
Ma and Ping ’17] [Hsieh, Rush, V ’21] . . .
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Example:

L = 25 users

n = 35 channel uses

(ω = 3,C = 5) base
matrix

5 10 15 20 25

5

10

15

20

25

30

35

Ti
m

e

User

Spatial coupling induces block-wise time-division with overlap
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AMP Decoder

Initialize with x0 = 0, and for t ≥ 0:

Modified residual: z t = y − Ax t + υ̃t � z t−1

Effective observation: st = x t + (S̃
t � A)Tz t

New estimate for user i : x t+1
i = E[ X | X +

√
τ ti G = sti ]

X ∼ PX , G ∼ N (0, IB)

τ t = (τ t1 , . . . , τ
t
L) specifies effective noise variance for each user

υ̃t , S̃
t
, τ t determined via state evolution recursion
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Theorem (Threshold Saturation)

Consider spatially coupled Gaussian A, message vectors x i ∼iid PX .

For any δ > 0, sufficiently large ω and sufficiently small ωC the
asymptotic user error rate of the AMP decoder satisfies

lim
t→∞

lim
L→∞

1

L

L∑
`=1

1
{
x̂ t
` 6= x`

}
≤ Pe(τ∗ + δ) a. s.

where the inner limit is taken with L/n = µ.

Here τ∗ is the global minimum of the potential function:

F(τ) = I (X ; Sτ ) +
1

2µ

[
ln
( τ

N0/2

)
−
(

1− N0/2

τ

)]
where τ ∈

[
N0
2 ,

N0
2 + µE

]
.
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User payload = 8 bits

For each µ, we find minimum Eb/N0 that achieves PUPE ≤ 10−3
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Spectral efficiency

For fixed Eb/N0 and target PUPE ε, achievable user density → 0
for iid Gaussian codebooks as user payload logM increases

Interesting regime for large payloads:

I Constant spectral efficiency:

S := µ logM =
L logM

n

I We will consider the limit L, n,M →∞ with S constant
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Theorem

1) Let

SBP =
1

2

(
1

ln 2
− 1

Eb/N0

)
.

Consider random coding with i.i.d. Gaussian codebooks. The
user error rate of the AMP decoder for any t ≥ 1 satisfies:

lim
L,M,n→∞

1

L

L∑
`=1

1
{
x̂ t
` 6= x`

}
=

{
0 if S < SBP,

1 otherwise,

SBP is called the belief propagation threshold
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Theorem

Combined matrix A

n/R

n

LB/C

LB

Base matrix W

R = C + ! � 1

C

!

2) Let Sopt be the solution to

Sopt =
1

2
log

(
1 +

EbSopt
N0/2

)
.

Consider random coding with a spatially coupled A. For
SBP ≤ S < Sopt, the error rate of the AMP decoder satisfies:

lim
L,M,n→∞

1

L

L∑
`=1

1
{
x̂ t
` 6= x`

}
= 0

for t and (ω,C) sufficiently large and ω/C sufficiently small
25 / 30
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Performance of optimal decoding with iid/uncoupled design can be
matched by spatially coupled design with message passing decoding

Future directions

Efficient schemes for larger user payloads, e.g., logM = 100 bits

I Finding stationary points of potential function infeasible for
very large M.

I Can get bounds by analyzing suboptimal AMP decoder which
has a simpler potential function [Kowshik ’22]

I Decoder implementation still challenging as size of codebook
matrix grows

Spatially coupled design for random access MACs

I Can we induce spatial coupling when users begin
transmissions at random times?

I In many applications, the number of users is also random
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Spatially coupled design with message passing decoding can match
performance of optimal decoding on uncoupled design

Spatially coupling for generalized linear models

y = f (Ax , w), x ∼ PX w ∼ PW

Examples:

Phase retrieval: y = |Ax |2 + w
1-bit measurements: y = sign(Ax)

Formula for asymptotic MMSE by [Barbier et al, ’19]

Can use spatially coupled A with AMP to approach MMSE

28 / 30



29 / 30



Decoding propagation
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