Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing

Ramji Venkataramanan
University of Cambridge

Marco Mondelli ISTA

ICML 2022

Generalized Linear Models

- ▶ GOAL: Estimate signal $\mathbf{x} \in \mathbb{R}^d$ from observations y_1, \dots, y_n
- ▶ Known sensing vectors $a_1, ..., a_n$ and output function q

Examples

▶ Linear model $y_i = \langle \mathbf{x}, \mathbf{a}_i \rangle + \varepsilon_i$

Examples

- ▶ Linear model $y_i = \langle \mathbf{x}, \mathbf{a}_i \rangle + \varepsilon_i$
- ▶ Phase retrieval $y_i = |\langle \mathbf{x}, \mathbf{a}_i \rangle|^2 + \varepsilon_i$

Examples

- ▶ Linear model $y_i = \langle \mathbf{x}, \mathbf{a}_i \rangle + \varepsilon_i$
- ▶ Phase retrieval $y_i = |\langle \mathbf{x}, \mathbf{a}_i \rangle|^2 + \varepsilon_i$
- ▶ 1-bit compressed sensing $y_i = sign(\langle x, a_i \rangle)$

Rotationally Invariant Model

$$m{A} = egin{bmatrix} \longleftarrow & m{a}_1^T & \longrightarrow \ & dots & \ \leftarrow & m{a}_n^T & \longrightarrow \end{bmatrix} \in \mathbb{R}^{n \times d}, \qquad m{y} = q(m{A}m{x}, \, m{arepsilon})$$

Rotationally invariant **A**

- ▶ SVD of $\mathbf{A} = \mathbf{O} \mathbf{\Lambda} \mathbf{Q}^T$
- ▶ **O**, **Q** uniformly random orthogonal matrices
- Arbitrary singular values Λ
- ► More general than Gaussian **A**, can capture complex correlation structure in the data

Rotationally Invariant Model

$$m{A} = egin{bmatrix} \longleftarrow & m{a}_1^T & \longrightarrow \ & dots & \ \leftarrow & m{a}_n^T & \longrightarrow \end{bmatrix} \in \mathbb{R}^{n \times d}, \qquad m{y} = q(m{A}m{x}, \, m{arepsilon})$$

Rotationally invariant **A**

- ▶ SVD of $\mathbf{A} = \mathbf{O} \mathbf{\Lambda} \mathbf{Q}^T$
- ▶ **O**, **Q** uniformly random orthogonal matrices
- Arbitrary singular values Λ
- ► More general than Gaussian **A**, can capture complex correlation structure in the data

High-dimensional setting: $d, n \to \infty$ and $\frac{n}{d} \to \delta \in \mathbb{R}$

Main contributions

- 1. RI-GAMP: Approximate Message Passing algorithm for rotationally invariant models
 - lteratively produces estimates x^t , for $t \ge 1$
 - Can be tailored to take advantage of prior info about signal

Main contributions

- 1. RI-GAMP: Approximate Message Passing algorithm for rotationally invariant models
 - ▶ Iteratively produces estimates \mathbf{x}^t , for $t \ge 1$
 - Can be tailored to take advantage of prior info about signal
- 2. Rigorous characterization of RI-GAMP iterates in high-dimensional setting via **state evolution**

Gives precise formulas for

Example: 1-bit compressed sensing

 ${\it x}$ with Rademacher prior, singular values of ${\it A}\sim \sqrt{6}\,{\rm Beta}(1,2)$

1.5

2

0.5

Comparison with Vector AMP

VAMP conjectured to be Bayes-optimal in some settings, but requires expensive SVD computation: $\mathcal{O}(d^3)$

RI-GAMP matches VAMP performance, but much faster: $\mathcal{O}(d^2)$

Idea of proof

We design an auxiliary AMP that

- uses knowledge of true signal x
- ▶ is an instance of abstract AMP recursion for rotationally invariant matrices [Zhong et al. '21], can be analyzed

Show that state evolution for RI-GAMP matches auxiliary AMP and that the iterates are close

Take-away

$$m{A} = egin{bmatrix} \longleftarrow & m{a}_1^T & \longrightarrow \ & dots & \ \longleftarrow & m{a}_n^T & \longrightarrow \end{bmatrix} \in \mathbb{R}^{n \times d}, \qquad m{y} = q(m{A}m{x}, m{arepsilon})$$

- Novel AMP estimator for rotationally invariant GLMs
- Sharp asymptotic performance guarantees via State Evolution
- ► Performance matching VAMP, but with lower complexity VAMP conjectured to be Bayes-optimal in some settings